PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 124 | 4 | 732-739
Article title

Quantum Flatland and Monolayer Graphene from a Viewpoint of Geometric Algebra

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Quantum mechanical properties of the graphene are, as a rule, treated within the Hilbert space formalism. However a different approach is possible using the geometric algebra, where quantum mechanics is done in a real space rather than in the abstract Hilbert space. In this article the geometric algebra is applied to a simple quantum system, a single valley of monolayer graphene, to show the advantages and drawbacks of geometric algebra over the Hilbert space approach. In particular, 3D and 2D Euclidean space algebras Cl_{3, 0} and Cl_{2, 0} are applied to analyze relativistic properties of the graphene. It is shown that only three-dimensional Cl_{3, 0} rather than two-dimensional Cl_{2, 0} algebra is compatible with a relativistic flatland.
Keywords
EN
Publisher

Year
Volume
124
Issue
4
Pages
732-739
Physical description
Dates
published
2013-10
received
2013-05-11
Contributors
author
  • Center for Physical Sciences and Technology, Semiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
References
  • [1] D.S.L. Abergel, V. Apalkov, J. Barashevich, K. Ziegler, T. Chakraborty, Adv. Phys. 59, 261 (2010)
  • [2] N.M.R. Peres, Rev. Mod. Phys. 82, 2673 (2010)
  • [3] S.D. Sarma, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011)
  • [4] D.R. Cooper, B. D'Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, V. Yu, e-print arXiv:cond-mat/1110.6557v1 (2011)
  • [5] P.E. Allain, J.N. Fuchs, Eur. Phys. J. B 83, 301 (2011)
  • [6] D. Hestenes, Space-Time Algebra, Gordon and Breach, New York 1966
  • [7] D. Hestenes, G. Sobczyk, Clifford Algebra to Geometrical Calculus (A Unified Language for Mathematics and Physics), Reidel, Boston 1984
  • [8] P. Lounesto, Clifford Algebra and Spinors, Cambridge University Press, Cambridge 1997
  • [9] C. Doran, A. Lasenby, Geometric Algebra for Physicists, Cambridge University Press, Cambridge 2003
  • [10] P.R. Girard, Quaternions, Clifford Algebras and Relativistic Physics, Birkhäuser, Basel 2007 (translated from French)
  • [11] A. Dargys, Superlatt. Microstruct. 48, 221 (2010)
  • [12] A. Dargys, Acta Phys. Pol. A 119, 161 (2011)
  • [13] A. Dargys, Physica E 47, 47 (2013)
  • [14] I.F. Herbut, Phys. Rev. B 83, 245445 (2011)
  • [15] C.G. Böhmer, L. Corpe, J. Phys. A: Math. Theor. 45, 205206 (2012)
  • [16] F. Kosiński, P. Maślanka, J. Slawińska, I. Zasada, e-print arXiv:cond-mat/1203.4094v1 (2012)
  • [17] A. Dargys, Lith. J. Phys. 49, 277 (2009)
  • [18] R. Abłamowicz, B. Fauser, K. Podlaski, J. Rembieliński, Czechoslov. J. Phys. 53, 949 (2003) and Preprint No. 2003-6, Tennessee Technological University
  • [19] A. Dargys, Phys. Scr. 79, 055702 (2009)
  • [20] J.M. Chappell, A. Iqbal, N. Iannella, D. Abbott, e-print arXiv:physics.class-ph/1106.3748v6 (2012)
  • [21] I.R. Porteous, Clifford Algebras and Their Classical Groups, Cambridge University Press, Cambridge 1995
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv124n424kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.