Preferences help
enabled [disable] Abstract
Number of results
2013 | 124 | 4 | 724-727
Article title

Investigation of the Low Frequency Polarization Mechanisms in Magnetic Fluids

Title variants
Languages of publication
The dielectric behaviour of a magnetic fluid with magnetite particles dispersed in kerosene was analyzed. Therefore, the frequency (f) and temperature (T) dependences of the complex dielectric permittivity, ε (f, T), over the ranges 4 kHz to 2 MHz and 25C to 90C were measured. Based on the experimental results of ε (f, T) and using the Clausius-Mossotti equation, we have determined the temperature dependence of the real part of the total polarizability α', of a magnetic fluid. The computations have taken into account that the magnetic fluid consists of three components, namely magnetite particles, surfactant, and carrier liquid. The results show that at a given frequency, α' increases with temperature in the low frequency range (4 kHz to 100 kHz) and decreases with temperature above 100 kHz. This behaviour demonstrates that in low frequency range the polarization mechanism related to the deformation of the counter ions atmosphere around each particle is predominant and above 100 kHz the orientation of the dipole moments is the main polarization mechanism of the magnetic fluid. These measurements enabled the evaluation of the effective dipole moment of the magnetic fluid, in order of 1.21 × 10^{-30} C m.
  • West University of Timisoara, Faculty of Physics, Bd. V. Parvan, no. 4, 300223 Timisoara, Romania
  • West University of Timisoara, Faculty of Physics, Bd. V. Parvan, no. 4, 300223 Timisoara, Romania
  • West University of Timisoara, Faculty of Physics, Bd. V. Parvan, no. 4, 300223 Timisoara, Romania
  • [1] R.E. Rosensweig, Ferrohydrodynamics, Cambridge University Press, Cambridge 1985
  • [2] P. Kopcansky, J. Cernak, P. Macko, D. Spisak, K. Marton, J. Phys. D, Appl. Phys. 22, 1410 (1989)
  • [3] N.I. Dyupovkin, Coll. J. Russ. Acad. Sci. 57, 442 (1995)
  • [4] I. Malaescu, C.N. Marin, J. Magn. Magn. Mater. 252, 68 (2002)
  • [5] O. Derriche, L. Jorat, G. Noyel, J. Monin, J. Magn. Magn. Mater. 102, 255 (1991)
  • [6] M.M. Radulescu, J. Magn. Magn. Mater. 85, 144 (1990)
  • [7] P.C. Fannin, C.N. Marin, I. Malaescu, N. Stefu, J. Phys., Condens. Matter 19, 036104 (2007)
  • [8] I. Malaescu, L. Gabor, F. Claici, N. Sţefu, J. Magn. Magn. Mater. 222, 8 (2000)
  • [9] A.R. Zakinyan, Zh.G. Vegera, O.V. Borisenko, Techn. Phys. 57, 344 (2012)
  • [10] J.C. Anderson, Dielectrics, Chapman and Hall, London 1963
  • [11] P. Debye, Polar Molecules, Dover Publication, New York 1929
  • [12] B.K.P. Scaife, Principles of Dielectrics, Clarendon Press, Oxford 1998
  • [13] I. Mihalca, A. Ercuta, C. Ionascu, Sensors Actuat. A, Phys. 106, 61 (2003)
  • [14] R.W. Chantrell, J. Popplewell, S.W. Charles, IEEE Trans. Magn. 14, 975 (1978)
  • [15] E. Kneller, Ferromagnetismus, Springer-Verlag, Berlin 1962
  • [16] E. Blums, A. Cebers, M.M. Maiorov, Magnetic Fluids, Walter de Gruyter, Berlin 1997
  • [17] C. Eigenbrod, O. Moriue, P. Weilmunster, H.J. Rath, in: 28th Int. Annual Conf. of ICT 1997, Fraunhofer Institut für Chemische Technologie, Karlsruhe 1997, p. 42.1
  • [18] D. Segawa, T. Kadota, R. Kohama, H. Enomoto, Proc. Combust. Inst. 28, 961 (2000)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.