Title variants
Languages of publication
Abstracts
The pressure dependence of the Raman linewidths for the ν_1 breathing mode is analyzed using the experimental data from the literature for the solid phases (I, II, III and III') in benzene. Increase (I, III and III') and decrease (II) in the Raman linewidths are described by a power-law analysis with the critical exponent β. The β values we find, which characterize the phase transition are in favour of the first order among those phases considered in benzene. The temperature and pressure dependence of the frequencies and linewidths of various Raman modes can be analyzed using a power-law formula, as studied here for the solid phases (I, II, III and III') in benzene when the experimental data are available in the literature.
Discipline
- 05.70.Fh: Phase transitions: general studies(see also 05.30.Rt Quantum phase transitions in quantum statistical mechanics; 64.70.Tg Quantum phase transitions in specific phase transitions; 73.43.Nq Quantum phase transitions in quantum Hall effects; for superconductivity phase diagrams, see 74.25.Dw; for magnetic phase boundaries, see 75.30.Kz; for ferroelectric phase transitions, see 77.80.B-)
- 64.60.-i: General studies of phase transitions(see also 63.70.+h Statistical mechanics of lattice vibrations and displacive phase transitions; for critical phenomena in solid surfaces and interfaces, and in magnetism, see 68.35.Rh, and 75.40.-s, respectively)
Journal
Year
Volume
Issue
Pages
698-701
Physical description
Dates
published
2013-10
received
2012-11-20
(unknown)
2013-07-15
Contributors
author
- Department of Physics, Middle East Technical University, 06531 Ankara, Turkey
author
- Department of Physics, Middle East Technical University, 06531 Ankara, Turkey
References
- [1] F. Cansell, D. Fabre, J.P. Petitet, J. Chem. Phys. 99, 7300 (1993)
- [2] P.W. Bridgman, J. Chem. Phys. 9, 794 (1941)
- [3] G.J. Piermarini, A.D. Mighell, C.E. Weir, S. Block, Science 165, 1250 (1969)
- [4] S. Block, C.E. Weir, G.J. Piermarini, Science 169, 586 (1970)
- [5] J. Akella, G.C. Kennedy, J. Chem. Phys. 55, 793 (1971)
- [6] M.M. Thiery, J.M. Leger, J. Chem. Phys. 89, 4255 (1988)
- [7] M.M. Thiery, I. Spain, K. Kobashi, Solid State Commun. 54, 95 (1985)
- [8] M.M. Thiery, D. Fabre, I. Spain, K. Kobashi, Physica B 139-140, 520 (1986)
- [9] S. Şen, H. Yurtseven, J. Optoelectron. Adv. Mater. Symp. 1, 517 (2009)
- [10] S. Şen, H. Yurtseven, Int. J. Trans. Phenom. 12, 319 (2011)
- [11] P. Figuiere, A.H. Fuchs, M. Ghelfenstein, H. Szwarc, J. Phys. Chem. Solids 39, 19 (1978)
- [12] Ph. Pruzan, D.H. Liebenberg, R.L. Mills, J. Phys. Chem. Solids 47, 949 (1986)
- [13] H. Yurtseven, T. Unsal, High Temp. Mater. Proc. 26, 365 (2007)
- [14] H. Yurtseven, T. Unsal, Tsinghua Sci. Tech. 12, 624 (2007)
- [15] H. Yurtseven, A.S. Karakuş, Int. J. Pharmac., Chem. Bio. Sci. 2, 729 (2012)
- [16] W.D. Ellenson, M. Nicol, J. Chem. Phys. 61, 1380 (1974)
- [17] D.M. Adams, R. Applety, J. Chem. Soc. Faraday Trans. 273, 1896 (1977)
- [18] A. Anderson, B. Piwowar, W. Smith, Spectrosc. Lett. 31, 1811 (1999)
- [19] L. Ciabini, M. Santoro, R. Bini, V. Schettino, J. Chem. Phys. 115, 3742 (2001)
- [20] L. Ciabini, F.A. Gorelli, M. Santoro, R. Bini, V. Schettino, M. Mezouar, Phys. Rev. B 72, 094108 (2005)
- [21] H. Yurtseven, B. Raşitoğlu, E. Kilit, J. Mol. Struct. 993, 428 (2011)
- [22] S. Califano, V. Schettino, Int. Rev. Phys. Chem. 7, 19 (1988)
- [23] M. Jordan, A. Schuch, R. Righini, G.F. Signorini, H.J. Jodl, J. Chem. Phys. 101, 3436 (1994)
- [24] M. Baggen, M. van Exter, A. Lagendijk, J. Chem. Phys. 86, 2423 (1986)
- [25] R.G. della Valle, R. Righini, Chem. Phys. Lett. 148, 45 (1988)
- [26] R. Torre, R. Righini, L. Angeloni, S. Califano, J. Chem. Phys. 93, 2967 (1990)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv124n416kz