PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 124 | 4 | 673-676
Article title

Monte Carlo Least-Squares Fitting of the Beam Propagation Factor M^{2}

Content
Title variants
Languages of publication
EN
Abstracts
EN
A new method for M^2 least-squares fitting using Monte Carlo technique is introduced. The laser beam parameters and the propagation factor M^2 are calculated according to the ISO 11146. The initial values of the fitted parameters are analytically calculated and simple relations are given. These relations use three experimental points of the laser beam at different positions. The Monte Carlo fitting algorithm converged rapidly for all the tested beam. The M^2 value of a diode pumped Nd:YVO_4 laser was optimized. The best M^2 value was 1.08. This optimization was done by changing the pump spot size at the laser crystal. The best overlapping between the pump spot size and the TEM_{00} mode dimension resulted in the best M^2 value.
Keywords
EN
Year
Volume
124
Issue
4
Pages
673-676
Physical description
Dates
published
2013-10
received
2013-02-19
(unknown)
2013-07-17
References
  • [1] A.E. Siegman, M.W. Sasnett, T.F. Johnston, IEEE J. Quant. Electron. 27, 1098 (1991)
  • [2] R. Borghi, M. Santarsiero, Opt. Lett. 22, 262 (1997)
  • [3] A.E. Siegman, 'How to (Maybe) Measure Laser Beam Quality', REOL, April 2004, presented at OSA Annual Meeting, 1998
  • [4] A.E. Siegman, S.W. Townsend, IEEE J. Quant. Electron. 29, 1212 (1993)
  • [5] ISO 11146-1:2005 'Lasers and laser-related equipment - Test methods for laser beam parameters - Beam widths divergence angle and beam propagation factor'
  • [6] ISO 11146-2:2005 'Lasers and laser related equipment - Test methods for laser beam widths divergence angles and beam propagation ratios General Astigmatic beams'
  • [7] ISO/TR 11146-3:2004 'Lasers and laser related equipment - Test methods for laser beam widths divergence angles and beam propagation ratios. Intrinsic and geometrical laser beam classification propagation and details of test methods'
  • [8] G. Nemes, A.E. Siegman, J. Opt. Soc. Am. A 11, 2257 (1994)
  • [9] R. Cortés, R. Villagómez, V. Coello, R. López, Revista Mexicana De Física 54, 279 (2008)
  • [10] O.A. Schmidt, C. Schulze, D. Flamm, R. Brüning, T. Kaiser, S. Schröter, M. Duparré, Opt. Expr. 19, 6741 (2011)
  • [11] C. Schulze, D. Flamm, M. Duparré, A. Forbes, Opt. Lett. 37, 4687 (2012)
  • [12] J. Pérez-Vizcaíno, O. Mendoza-Yero, R. Martínez-Cuenca, L. Martínez-León, E. Tajahuerce, J. Lancis, J. Displ. Techn. 8, 539 (2012)
  • [13] J.V. Sheldakova, A.V. Kudryashov, V.Y. Zavalova, T.Y. Cherezova, Proc. SPIE 6452, 645207 (2007)
  • [14] W.H. Press, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C++, Cambridge University Press, New York 2007
  • [15] C. Calvert, Borland C++ Builder Unleashed, Borland Press, Indianapolis 1998
  • [16] N. Hodgson, H. Weber, Optical Resonators, Springer, New York 1996
  • [17] A.E. Siegman, Lasers, Oxford Univ. Press, California 1986
  • [18] P. Das, Lasers and Optical Engineering, Springer, New York 1990
  • [19] Z. Xiong, G. Li, N. Moore, W.L. Huang, G.C. Lim, IEEE J. Quant. Electron. 39, 979 (2003)
  • [20] B. Neuenschwander, R. Weber, H.P. Weber, IEEE J. Quant. Electron. 31, 1082 (1995)
  • [21] J. Zheng, S. Zhao, L. Chen, Opt. Laser Technol. 34, 439 (2002)
  • [22] P.K. Mukhopadhyay, K. Ranganathan, J. George, S.K. Sharma, T.P.S. Nathan, Opt. Laser Technol. 34, 253 (2002)
  • [23] W. Koechner, Solid-State Laser Engineering, Springer, New York 2006
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv124n411kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.