Journal
Article title
Title variants
Languages of publication
Abstracts
Investigation of nitric oxide and nitrous oxide optoelectronic sensors is described. The detection of both components was done by measurement of absorption that occurs due to transition between vibronic molecular transitions. The improvement of the sensitivity was achieved due to application of cavity enhanced absorption spectroscopy. Two optical cavities (each one for each gas) built of high reflectance spherical mirrors were used. While the spectra of observed transitions are situated in mid-infrared range, two single mode quantum cascade lasers were applied. Their narrow emission lines were precisely tuned to the absorption lines of both investigated gases. The measurement of different mixtures of Ar-NO and Ar-N_2O within the range from 100 ppb to 10 ppm was performed. The relative uncertainty of the results did not exceed the level of 13%.
Discipline
- 42.25.Dd: Wave propagation in random media
- 42.62.Fi: Laser spectroscopy
- 07.07.Df: Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing
- 42.55.Px: Semiconductor lasers; laser diodes
- 85.60.-q: Optoelectronic devices(see also 42.79.-e Optical elements, devices and systems)
- 42.60.Da: Resonators, cavities, amplifiers, arrays, and rings
Journal
Year
Volume
Issue
Pages
592-594
Physical description
Dates
published
2013-09
Contributors
author
- Institute of Optoelectronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
author
- Institute of Optoelectronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
author
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Hoża 69, 00-068 Warsaw, Poland
author
- Institute of Optoelectronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
author
- Institute of Optoelectronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
author
- Institute of Optoelectronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
References
- [1] J.H. Seinfeld, S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New Jersey 2006
- [2] L. Falkowska, K. Korzeniewski, Atmospheric Chemistry, University of Gdańsk Publisher, Gdańsk 1998
- [3] J. Wojtas, Z. Bielecki, T. Stacewicz, J. Mikołajczyk, M. Nowakowski, Opto-Electron. Rev. 20, 125 (2011)
- [4] C. Wang, P. Sahay, Sensors 9, 8230 (2009)
- [5] T.M. Klapotke, Chemistry of High-Energy Materials, Walter de Gruyter, Berlin 2011
- [6] Z. Bielecki, J. Janucki, A. Kawalec, J. Mikołajczyk, N. Palka, M. Pasternak, T. Pustelny, T. Stacewicz, J. Wojtas, Metrol. Meas. Syst. XIX, 3 (2012)
- [7] CIA Explosives for Sabotage Manual, Paladin Press, Colorado 1987
- [8] L. Senesac, T.G. Thundat, Mater. Today 11, 28 (2008)
- [9] Energetic Materials, Decomposition Crystal and Molecular Properties, Eds. P. Politzer, J.S. Murray, Elsevier, Amsterdam 2003
- [10] J.L. Munson, F.C. Gottfried De Lucia, Jr., K.L. McNesby, A.W. Miziolek, Laser-Based Detection Methods for Explosives, Army Research Laboratory, Aberdeen (MD) 2007
- [11] J. Wojtas, in: Optoelectronics - Devices and Applications, Ed. P. Predeep, InTech Publishers, Vienna 2011, p. 147
- [12] J. Wojtas, Z. Bielecki, Opto-Electron. Rev. 16, 420 (2008)
- [13] J. Wojtas, J. Mikolajczyk, M. Nowakowski, B. Rutecka, R. Medrzycki, Z. Bielecki, Bull. Pol. Acad. Sci., Tech. Sci. 59, 415 (2011)
- [14] T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, B. Rutecka, Opto-Electron. Rev. 20, 53 (2012)
- [15] W. Jakubik, M. Urbanczyk, E. Maciak, T. Pustelny, Acta Phys. Pol. A 116, 414 (2009)
- [16] P. Struk, T. Pustelny, K. Gut, K. Golaszewska, E. Kaminska, M. Ekielski, I. Pasternak, E. Lusakowska, A. Piotrowska, Opto-Electron. Rev. 19, 462 (2011)
- [17] J. Ignac-Nowicka, T. Pustelny, Z. Opilski, E. Maciak, W. Jakubik, M. Urbanczyk, Opt. Eng. 42, 2978 (2003)
- [18] J. Wojtas, A. Czyzewski, T. Stacewicz, Z. Bielecki, Opt. Appl. 36, 461 (2006)
- [19] J. Wojtas, Z. Bielecki, T. Stacewicz, J. Mikolajczyk, R. Medrzycki, B. Rutecka, Acta Phys. Pol. A 120, 794 (2011)
- [20] D.J. Hamilton, A.J. Orr-Ewing, Appl. Phys. B 102, 879 (2011)
- [21] M. Triki, P. Cermak, G. M'Ejean, D. Romanini, Appl. Phys. B 91, 195 (2008)
- [22] A. O'Keefe, D.A. Deacon, Rev. Sci. Instrum. 59, 2544 (1988)
- [23] R. Engeln, G. Berden, R. Peeters, G. Meijer, Rev. Sci. Instrum. 69, 3763 (1998)
- [24] K.W. Busch, M.A. Busch, ACS Symposium Series, Cavity-Ringdown Spectroscopy, An Ultratrace-Absorption Measurement Technique, Washington DC 1999
- [25] J. Wojtas, A. Czyżewski, T. Stacewicz, Z. Bielecki, J. Mikolajczyk, Proc. SPIE 5954, 174 (2005)
- [26] G. Berden, R. Engeln, Cavity Ring-Down Spectroscopy: Techniques and Applications, Wiley-Blackwell, Chichester 2009
- [27] L. Menzel, A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, W. Urban, Appl. Phys. B 72, 859 (2001)
- [28] A.A. Kosterev, A.L. Malinovsky, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Appl. Opt. 40, 5522 (2001)
- [29] K. Namjou, C.B. Roller, G. McMillen, in: Proc. 6th Annual IEEE Conf. on Sensors 7, 1337 (2007)
- [30] J. Wojtas, R. Medrzycki, B. Rutecka, J. Mikolajczyk, M. Nowakowski, D. Szabra, M. Gutowska, T. Stacewicz, Z. Bielecki, Proc. SPIE 8374, 837414 (2012)
- [31] A. Rogalski, Z. Bielecki, in: Handbook of Optoelectronics, Eds. J. Dakin, R.G.W. Brown, Taylor & Francis, London 2006, p. 73
- [32] http://www.vigo.com.pl/
- [33] A. Piotrowski, P. Madejczyk, W. Gawron, K. Klos, M. Romanis, M. Grudzien, A. Rogalski, J. Piotrowski, Opto-Electron. Rev. 12, 453 (2004)
- [34] J. Wojtas, T. Stacewicz, Z. Bielecki, B. Rutecka, R. Medrzycki, J. Mikolajczyk, Opto-Electron. Rev. 21, 210 (2013)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv124n355kz