PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 124 | 3 | 451-455
Article title

On Current and Prospective Use of Binary Thin Multilayers in Radar Absorbing Structures

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The main objective of the paper is to overview of the actual and potential capabilities of some complex multilayers to enhance, and control the microwave absorption. Going through available literature data we emphasize the role of interphase coupling, and material resonances in enhancing phenomena of importance for internal scattering, diffusions, and intrinsic material absorption of propagating EM wave, especially in microwave and mm wave ranges. The theoretical background is consequently formulated in terms of transmissions line approach.
Keywords
Contributors
author
  • Faculty of Electronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
References
  • [1] Yu.K. Kovneristyi, I.Yu. Lazareva, A.A. Ravaev, Microwave-Absorbing Materials, Nauka, Moscow 1982 (in Russian)
  • [2] C.R. Paul, Introduction to Electromagnetic Compatibility, 2nd ed., Wiley-Interscience, Hoboken 2006
  • [3] S. Kunihiro, USA Patent 3623099, 1970
  • [4] Jpn. Patent 54 (1979)
  • [5] E.F. Knott, C.D. Lunden, IEEE Trans. Antennas Propag. 43, 1339 (1995)
  • [6] J. Kapelewski, Acta Phys. Pol. A 120, 647 (2011)
  • [7] K.J. Vinoy, R.M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization, Kluwer, Boston 1996
  • [8] Z. Bayraktar, M.D. Gregory, X. Wang, D.H. Werner, IEEE Trans. Antennas Propag. 60, 1910 (2012)
  • [9] J. Smit, H.P.J. Wijn, Ferrites: Physical Properties of Ferromagnetic Oxides in Relation to Their Technical Applications, Philips Technical Library, Eindhoven 1959
  • [10] B. Lax, K.J. Button, Microwave Ferrites and Ferrimagnetics, McGraw-Hill, New York 1962
  • [11] C.P. Neo, V.K. Varadan, IEEE Trans. Electromagn. Compat. 46, 102 (2004)
  • [12] S. Chikazumi, Physics of Ferromagnetism, Oxford University Press, Oxford 1997
  • [13] T. Nagamiya, K. Yosida, R. Kubo, Adv. Phys. 4, 1 (1955)
  • [14] P. Saville, Review of Radar Absorbing Materials, Defence R&D Canada, Atlantic 2005
  • [15] E. Knott, J. Shaeffer, M. Tulley, Radar Cross Section, 2nd ed., SciTech Publ., New York 2004
  • [16] A. Sukhov, C.-L. Jia, P.P. Horley, J. Berakdar, J. Phys., Condens. Matter 22, 352201 (2010)
  • [17] C. Kittel, Phys. Rev. 73, 155 (1948)
  • [18] K.N. Rozanov, IEEE Trans. Antennas Propagat. 48, 1230 (2000)
  • [19] J. Cao, W. Fu, H. Yang, Q. Yu, Y. Zhang, S. Liu, P. Sun, X. Zhou, Y. Leng, S. Wang, B. Liu, G. Zou, J. Phys. Chem. B 113, 4642 (2009)
  • [20] A.-Y. Ge, B.-S. Xu, X.-M. Wang, T.-B. Li, P. Han, X.-G. Liu, Acta Phys. Chim. Sin. 22, 203 (2006)
  • [21] D.S. Bychanok, S.I. Moseenkov, V.L. Kuznetsov, P.P. Kuzhir, S.A. Maksimenko, K.G. Batrakov, O.V. Ruhavets, A.V. Gusinski, O. Shenderova, Ph. Lambin, J. Nanoelectron. Optoelectron. 4, 257 (2009)
  • [22] Q.-W. Chen, Ch. Yao, C. Fangyu, 7th IEEE Conf. on Nanotechnology, Hong Kong 2007, p. 1326
  • [23] Y. Bai, J. Zhou, Z. Gui, L. Li, L. Qiao, J. Appl. Phys. 101, 083907 (2007)
  • [24] J.-J. Fang, S.-F. Li, W.-K. Zha, H.-Y. Cong, J.-F. Chen, Z.-Z. Chen, J. Inorg. Mater. 26, 467 (2011)
  • [25] W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)
  • [26] M. Fiebig, J. Phys. D 38, R123 (2005)
  • [27] N. Spaldin, M. Fiebig, Science 309, 391 (2005)
  • [28] R. Ramesh, N.A. Spaldin, Nature Mater. 6, 21 (2007)
  • [29] M. Bibes, A. Barthelemy, Nature Mater. 7, 425 (2008)
  • [30] C.A.F. Vaz, J. Hoffman, C.H. Ahn, R. Ramesh, Adv. Mater. 22, 2900 (2010)
  • [31] F. Zavaliche, T. Zhao, H. Zheng, F. Straub, M.P. Cruz, P.-L. Yang, D. Hao, R. Ramesh, Nano Lett. 7, 1586 (2007)
  • [32] D.I. Mirovitskii, V.M. Petrov, Radiotekhnika 3, 60 (1989)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv124n319kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.