Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 124 | 2 | 350-359

Article title

Synchrotron Diffraction topography in Studying of the Defect Structure in Crystals Grown by the Czochralski Method

Content

Title variants

Languages of publication

EN

Abstracts

EN
The synchrotron diffraction topography had been widely used for investigation of the structural defects in crystals grown by the Czochralski method. Similarly as conventional diffraction topography, the synchrotron topography consists in recording with high spatial resolution of the beam formed by the Bragg reflection from the crystal. The advantages of synchrotron sources come from the possibilities of using the wavelength from a wide spectral range, improved high spatial resolution and collimation of the beam as well as from shortening the time necessary for the investigation. The synchrotron diffraction topography includes experimentally simpler white beam topography and more complicated monochromatic beam (multicrystal) topography, where the beam is formed by monochromators. In the case of Czochralski-grown crystals the synchrotron diffraction topography can be used for studying of the individual dislocations and their complexes such as glide bands or sub-grain boundaries, individual blocks, twinning, the domain structure and various segregation effects negatively affecting crystal properties. In addition, the topographical investigation can provide information concerning the reasons for the generation of defects, useful in the improving of the technology. In the present paper the possibilities of the synchrotron diffraction topography are discussed on the basis of several investigations of the Czochralski-grown oxide and semiconductor crystals, performed by the authors at HASYLAB. The majority of the results concern the oxide crystals grown at the Institute of Electronic Materials Technology, in particular garnets, orthovanadates, mixed calcium barium and strontium niobates as well as praseodymium lanthanum aluminates.

Keywords

EN

Contributors

  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
author
  • National Centre for Nuclear Research, A. Sołtana 7, 05-400 Otwock-Świerk, Poland
author
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
author
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
  • Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
author
  • HASYLAB at DESY, Notkestr. 85, D-22607 Hamburg, Germany

References

  • 1. W.F. Berg, Naturwissenschaften 19, 391 (1931)
  • 2. C.S. Barrett, Trans. AIME 161, 391 (1945)
  • 3. G.N. Ramachandran, Proc. Indian Acad. Sci. A 19, 280 (1944)
  • 4. A. Guinier, J. Tennevin, Acta Crystallogr. 2, 133 (1949)
  • 5. W.L. Bond, J. Andrus, Am. Mineralogist 37, 37 (1952)
  • 6. L.G. Schultz, Trans. AIME 200, 1082 (1954)
  • 7. A.R. Lang, Acta Metall. 5, 358 (1957)
  • 8. A.R. Lang, J. Appl. Phys. 29, 597 (1958)
  • 9. B.K. Tanner, X-Ray Diffraction topography, Pergamon Press, Oxford 1976
  • 10. U. Bonse, E. Kappler, Z. Naturforsch. 214, 16 (1958)
  • 11. U. Bonse, Z. Phys. 153, 278 (1958)
  • 12. M. Renninger, Adv. X-ray Anal. 10, 32 (1967)
  • 13. M. Renninger, Z. Naturforsch. A 19, 783 (1964)
  • 14. T. Tuomi, K. Naukkarinen, P. Rabe, Phys. Status Solidi (a) 25, 93 (1974)
  • 15. M. Hart, J. Appl. Crystallogr. 8, 436 (1975)
  • 16. B.K. Tanner, M. Safa, D. Midgley, J. Bordas, J. Magn. Magn. Mater. 1, 337 (1976)
  • 17. B.K. Tanner, Prog. Cryst. Growth Character. 1, 23 (1976)
  • 18. M. Hart, M. Sauvage, D.P. Siddons, Acta Crystallogr. A 36, 947 (1980)
  • 19. J.F. Petroff, M. Sauvage, J. Cryst. Growth 43, 628 (1978)
  • 20. M. Sauvage, Nucl. Instrum. Methods 152, 313 (1978)
  • 21. R.W. Whatmore, P.A. Goddard, B.K. Tanner, Nature 299, 44 (1982)
  • 22. H. Cerva, W. Graeff, Phys. Status Solidi (a) 87, 507 (1985)
  • 23. W. Graeff, K. Wieteska, J. Sci. Technol. 3, 162 (1992)
  • 24. D.K. Bowen, B.K. Tanner, High Resolution X-ray Diffractometry and topography, Taylor and Francis, London 1998
  • 25. A. Authier, Dynamical Theory of X-Ray Diffraction, Oxford University Press Inc., New York 2001
  • 26. K. Wieteska, Acta Phys. Pol. A 86, 545 (1994)
  • 27. M. Moore, Crystallogr. Rev. 18, 207 (2012)
  • 28. A.R. Lang, A.P.W. Makepeace, M. Moore, W.K. Wierzchowski, C.M. Welbouurn, Philos. Trans. R. Soc. Lond. A 337, 497 (1991)
  • 29. J. Baruchel, M. DiMichiel, T. Lafford, P. Lhuissier, J. Meyssonier, H. Nguyen-Thi, A. Philip, P. Pernot, L. Salvo, M. Scheel, C.R. Phys. 14, 208 (2013)
  • 30. A. Malinowska, M. Lefeld-Sosnowska, J. Hartwig, J. Appl. Crystallogr. 46, 48 (2013)
  • 31. E. Kasper, N. Burle, S. Escoubas, J. Werner, M. Oeheme, K. Lyutovich, J. Appl. Phys. 111, 063507 (2012)
  • 32. S. Yao, X. Hu, T. Yan, H. Liu, J. Wang, X. Qin, Y. Chen, J. Appl. Crystallogr. 43, 276 (2010)
  • 33. M. Muehlberg, M. Burianek, B. Joschko, D. Klimm, A. Danilewsky, M. Gelissen, L. Bayarjargal, G.P. Görler, B.O. Hildmann, J. Cryst. Growth 310, 2288 (2008)
  • 34. I.A. Prokhorov, B.G. Zakharov, A.S. Senchekov, A.V. Egorov, D. Camel, P. Tison, J. Cryst. Growth 310, 4701 (2008)
  • 35. Y. Yoneda, J. Mizuki, H. Takeda, T. Shiosaki, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 971 (2008)
  • 36. G.-D. Yao, S.Y. Hou, M. Dudley, J.M. Phillips, J. Mater. Res. 7, 1847 (1992)
  • 37. M. Dudley, G.-D. Yao, J. Phys. D 26, A120 (1993)
  • 38. W. Wierzchowski, K. Wieteska, W. Graeff, Acta Phys. Pol. A 91, 1015 (1997)
  • 39. K. Wieteska, W. Wierzchowski, E. Wierzbicka, A. Malinowska, M. Lefeld-Sosnowska, T. Łukasiewicz, W. Graeff, Acta Phys. Pol. A 114, 438 (2008)
  • 40. E. Wierzbicka, A. Malinowska, K. Wieteska, W. Wierzchowski, M. Lefeld-Sosnowska, M. Świrkowicz, T. Łukasiewicz, C. Paulmann, Acta Phys. Pol. A 121, 906 (2012)
  • 41. K. Wieteska, W. Wierzchowski, W. Graeff, M. Lefeld-Sosnowska, A. Pajączkowska, E. Wierzbicka, A. Malinowska, J. Alloys Comp. 401, 75 (2005)
  • 42. A. Malinowska, M. Lefeld-Sosnowska, K. Wieteska, W. Wierzchowski, W. Graeff, A. Pajaczkowska, J. Cryst. Growth 310, 3398 (2008)
  • 43. K. Wieteska, W. Wierzchowski, W. Graeff, M. Lefeld-Sosnowska, M. Regulska, Acta Phys. Pol. A 101, 729 (2002)
  • 44. M. Lefeld-Sosnowska, E. Olszyńska, W. Wierzchowski, K. Wieteska, W. Graeff, A. Pajączkowska, A. Kłos, J. Alloys Comp. 382, 153 (2004)
  • 45. K. Wieteska, W. Wierzchowski, A. Malinowska, S. Turczyński, M. Lefeld-Sosnowska, D.A. Pawlak, T. Łukasiewicz, C. Paulmann, Acta Phys. Pol. A 121, 910 (2012)
  • 46. K. Wieteska, W. Wierzchowski, A. Malinowska, S. Turczyński, M. Lefeld-Sosnowska, D.A. Pawlak, T. Łukasiewicz, W. Graeff, Acta Phys. Pol. A 117, 268 (2010)
  • 47. K. Wieteska, W. Wierzchowski, W. Graeff, M. Lefeld-Sosnowska, M. Regulska, J. Phys. D 36, A133 (2003)
  • 48. K. Wieteska, W. Wierzchowski, W. Graeff, M. Lefeld-Sosnowska, M. Regulska, Mater. Sci. Eng. B 91-92, 462 (2002)
  • 49. K. Wieteska, W. Wierzchowski, A. Malinowska, M. Lefeld-Sosnowska, M. Świrkowicz, T. Łukasiewicz, C. Paulmann, Radiat. Phys. Chem. in press (2013)
  • 50. K. Kołodziejak, W. Wierzchowski, K. Wieteska, M. Malinowski, W. Graeff, T. Łukasiewicz, Cryst. Res. Technol. 43, 369 (2008)
  • 51. W. Wierzchowski, K. Wieteska, W. Graeff, H. Sakowska, T. Łukasiewicz, M. Pawłowska, Cryst. Res. Technol. 40, 517 (2005)
  • 52. D. Savytskii, A. Senyshyn, A. Matkowskii, L. Vasylechko, K. Wieteska, W. Wierzchowski, T. Łukasiewicz, U. Bismayer, Z. Kristallogr. 218, 17 (2003)
  • 53. W. Wierzchowski, K. Wieteska, W. Graeff, M. Pawłowska, B. Surma, S. Strzelecka, J. Alloys Comp. 362, 301 (2004)
  • 54. A. Malinowska, M. Lefeld-Sosnowska, K. Wieteska, W. Wierzchowski, J. Härtwig, W. Graeff, Phys. Status Solidi (a) 206, 1816 (2009)
  • 55. A. Authier, Adv. X-Ray Anal. 10, 9 (1967)
  • 56. T. Balcer, W. Wierzchowski, K. Wieteska, Acta Phys. Pol. A 117, 333 (2010)
  • 57. R. Sen, J. Quant. Mech. VIII, 365 (1949)
  • 58. W. Wierzchowski, T. Balcer, K. Wieteska, A. Malinowska, M. Lefeld-Sosnowska, K. Mazur, http://photon-science.desy.de/annual_report/files/2010/2010927.pdf Experimental and Numerically Simulated Bragg-Case Topographic Images of Rod-Like Inclusions, Hasylab Annual Report, 2010
  • 59. K. Wieteska, W. Wierzchowski, A. Malinowska, M. Lefeld-Sosnowska, M. Swirkowicz, T. Łukasiewicz, M. Romaniec, E. Wierzbicka, C. Paulmann, Observation of Ghost Segregation Pattern in CSBN Crystals, Hasylab Annual Report, 2012

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv124n226kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.