PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 124 | 2 | 198-212
Article title

Seed Production and Melt Replenishment for the Czochralski Growth of Silicon Germanium

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The silicon transport in a silicon-germanium melt has been studied to address the issues of melt replenishment and seed production for the Czochralski growth of silicon germanium (SiGe) crystals. The growth of SiGe single crystals by the Czochralski method requires that the melt be replenished with silicon during the growth process due to the rejection of germanium into the melt during solidification. To facilitate the replenishment of the melt, an accurate knowledge of the dissolution rate of silicon into the melt and its transport through the melt is required. To address these issues, a number of experiments have been carried out on the dissolution of silicon into a germanium melt. Liquid phase diffusion growth experiments were also conducted for insight into transport and as a possible method for seed crystal production. The experiments encompassed various temperatures, crucible geometries, crucible translation, and magnetic field levels to determine optimum conditions for the most favorable dissolution rates and mass transport in the melt. Results have shown that replenishment from bottom of the crucible is most effective due to the enhanced silicon transport by buoyancy. The application of magnetic fields may also provide an effective mean to control the replenishment rate (mass transport rate) in the melt.
Keywords
EN
Contributors
author
  • Crystal Growth Laboratory, University of Victoria, Victoria, BC, V8W 3P6, Canada
author
  • Crystal Growth Laboratory, University of Victoria, Victoria, BC, V8W 3P6, Canada
References
  • 1. E. Kasper, J. Cryst. Growth 150, 921 (1995)
  • 2. I. Yonenaga, J. Cryst. Growth 275, 91 (2005)
  • 3. N. Abrosimov, S. Rossolenko, V. Alex, A. Gerhardt, W. Schroder, J. Cryst. Growth 166, 657 (1966)
  • 4. I. Yonenaga, M. Nonaka, J. Cryst. Growth 191, 393 (1998)
  • 5. X. Niu, W. Zhang, G. Lu, Z. Jiang, J. Cryst. Growth 267, 424 (2004)
  • 6. N. Usami, R. Nihei, I. Yonenaga, Y. Nose, K. Nakajima, Appl. Phys. Lett. 90, 181914 (2007)
  • 7. D. Yang, J. Chen, H. Li, X. Ma, D. Tian, L. Li, D. Que, J. Cryst. Growth 292, 266 (2006)
  • 8. G. Azhdarov, T. Kucukomeroglu, A. Varilci, M. Altunbas, A. Kobya, P. Azhdarov, J. Cryst. Growth 226, 437 (2001)
  • 9. N. Abrosimov, S. Rossolenko, W. Thieme, A. Gerhardt, W. Schroder, J. Cryst. Growth 174, 182 (1997)
  • 10. I. Yonenaga, Y. Murakami, J. Cryst. Growth 191, 399 (1998)
  • 11. A. Matsui, I. Yonenaga, K. Sumino, J. Cryst. Growth 183, 109 (1998)
  • 12. A. Dahlen, A. Fattah, G. Hanke, E. Karthaus, Cryst. Res. Technol. 29, 187 (1994)
  • 13. N. Armour, S. Dost, B. Lent, J. Cryst. Growth 299, 227 (2007)
  • 14. M. Yildiz, S. Dost, B. Lent, J. Cryst. Growth 280, 151 (2005)
  • 15. A. Borshchevsky, J.P. Fleurial, J. Cryst. Growth 128, 331 (1993)
  • 16. E. Yildiz, S. Dost, M. Yildiz, J. Cryst. Growth 291, 497 (2006)
  • 17. E. Yildiz, S. Dost, J. Cryst. Growth 303, 279 (2007)
  • 18. N. Armour, S. Dost, Fluid Dyn. Mater. Proc. 5, 331 (2009)
  • 19. F. Micheghel, N. Armour, S. Dost, M. Kadja, TWMS J. Appl. Engr. Math. 1, 127 (2011)
  • 20. N. Armour, S. Dost, J. Cryst. Growth 306, 200 (2007)
  • 21. N. Armour, S. Dost, J. Phys., Conf. Series 327, 012016 (2011)
  • 22. N. Usami, M. Kitamura, K. Obara, Y. Nose, T. Shishido, K. Nakajima, J. Cryst. Growth 284, 57 (2005)
  • 23. M. Yildiz, S. Dost, B. Lent, Cryst. Res. Technol. 41, 211 (2006)
  • 24. N. Armour, M. Yildiz, E. Yildiz, S. Dost, ECS Trans. 16, 135 (2008)
  • 25. N. Armour, S. Dost, Cryst. Res. Technol. 45, 244 (2010)
  • 26. N. Armour, S. Dost, Cryst. Res. Technol. 45, 335 (2010)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv124n205kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.