Title variants
Languages of publication
Abstracts
Three different zirconium oxynitride films were deposited onto glass and Si (100) substrates at room temperature by pulsed reactive dc magnetron sputtering of a metallic Zr target in an Ar/O_2/N_2 atmosphere. The structural, compositional and optical properties of the deposited films were found to depend on the ratio of nitrogen partial pressure to the total reactive gas partial pressure. Energy-dispersive X-ray spectroscopy measurements revealed that as the nitrogen amount increased in the reactive gas the nitrogen content was found to increase in the film. The film structure was determined by X-ray diffraction. The X-ray diffraction patterns of the analyzed samples revealed a strong dependence of the ZrO_xN_{y} film structure on composition. A two layer model, the Bruggeman effective medium approximation and both Drude absorption edge and Lorentz oscillators were used to describe the surface roughness layer and the main ZnO_xN_{y} layer, respectively, was used to describe the experimental ellipsometric data. The optical band gap was decreased from 3.56 to 3.45 eV with changing nitrogen content, while refractive index at 650 nm simultaneously was increased from 1.98 to 2.11.
Discipline
- 78.66.-w: Optical properties of specific thin films(for optical properties of low-dimensional, mesoscopic, and nanoscale materials, see 78.67.-n; for optical properties of surfaces, see 78.68.+m)
- 81.15.Gh: Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.)(for chemistry of MOCVD, see 82.33.Ya in physical chemistry and chemical physics)
- 61.05.C-: X-ray diffraction and scattering(for x-ray diffractometers, see 07.85.Jy; for x-ray studies of crystal defects, see 61.72.Dd, Ff)
Journal
Year
Volume
Issue
Pages
141-145
Physical description
Dates
published
2013-07
received
2012-06-12
(unknown)
2013-03-05
Contributors
author
- Physics Department, College of Science, Qassim University, P.O. 6644, 51452, Buryadh, Kingdom of Saudi Arabia
References
- [1] S. Collard, H. Kupfler, G. Hecht, W. Hoyer, H. Moussaoui, Surf. Coat. Technol. 112, 181 (1999)
- [2] Y. Saito, M. Hirata, H. Tada, M. Hyodo, Appl. Phys. Lett. 63, 1319 (1993)
- [3] G. Hitoki, T. Takata, J. Kondo, M. Hara, H. Kobayashi, K. Domen, Chem. Commun. 16, 1698 (2002)
- [4] E. Vogelzang, J. Sjollema, H.J. Boer, J.T.M. Doer Hosson, J. Appl. Phys. 61, 4606 (1987)
- [5] Y.B. Cheng, D.P. Thompson, Spec. Ceram. 9, 149 (1992)
- [6] M. Lerch, F. Krumeich, R. Hock, Solid State Ionics 95, 87 (1997)
- [7] J. Wendel, M. Lerch, W. Laqua, J. Solid State Chem. 142, 163 (1999)
- [8] M.A. Signore, A. Rizzo, L. Mirenghi, M.A. Tagliente, A. Cappello, Thin Solid Films 515, 6798 (2007)
- [9] T. Sikola, J. Spousta, L. Dittrichova, I. Benes, Nucl. Instrum. Methods Phys. Res. B 127-128, 673 (1999)
- [10] M.M. Mikhailov, V.V. Neshchimenko, C. Li, B.-J. Ye, J. Lumin. 130, 1671 (2010)
- [11] V. Teixeira, M. Andritschky, W. Fischer, H.P. Buchkremer, D. Stöver, Surf. Coat. Technol. 120-121, 103 (1999)
- [12] G.Z. Cao, H.W. Brinkman, J. Meijerink, K.J. De Vries, A. Burggraaf, J. Am. Ceram. Soc. 76, 2201 (1993)
- [13] J.T. DeMasi-Marcin, K. Gupta Dinesh, Surf. Coat. Technol. 68/69, 1 (1994)
- [14] G. Johner, K.K. Schweitzer, J. Vac. Sci. Technol. A 3, 2516 (1985)
- [15] A. Portinha, V. Teixeira, Vacuum 82, 1517 (2008)
- [16] R.C. Garvie, J. Phys. Chem. 82, 218 (1978)
- [17] V. Teixeira, A. Monteiro, J. Duarte, A. Portinha, Vacuum 67, 477 (2002)
- [18] R. Brenier, A. Gagnair, Thin Solid Films 392, 142 (2001)
- [19] J.P. Holgado, J.P. Espino's, F. Yubero, A. Justo, M. Ocanã, J. Benıtez, A.R. González-Elipe, Thin Solid Films 389, 34 (2001)
- [20] L. Bianchi, A.C. Leger, H. Vardelle, A. Vardelle, P. Fauchais, Thin Solid Films 305, 35 (1997)
- [21] K. Goedicke, J. Liebig, O. Zywitzki, H. Sahm, Thin Solid Films 377-378, 37 (2000)
- [22] J. Wrba, M. Lerch, G. Muller, J. Mater. Sci. Lett. 19, 107 (2000)
- [23] M. Ohashi, H. Yamamoto, S. Yamanaka, M. Hattori, Mater. Res. Bull. 28, 513 (1993)
- [24] M. Lerch, J. Mater. Sci. Lett. 17, 441 (1998)
- [25] R.A. Synowicki, Thin Solid Films 313-314, 394 (1998)
- [26] S. Venkataraj, O. Kappertz, R. Jayavel, M. Wuttig, J. Appl. Phys. 92, 2461 (2002)
- [27] F. Rubio, J.M. Albella, J. Denis, J.M. Martnez-Duart, J. Vac. Sci. Technol. 21, 1043 (1982)
- [28] B. Karlik, E.K. Chang, S.G. Louie, Phys. Rev. B 57, 7027 (1998)
- [29] L.Q. Zhu, Q. Fang, G. He, M. Liu, L.D. Zhang, Nanotechnology 16, 2865 (2005)
- [30] S.H. Mohamed, A.M. Abd El-Rahman, M.R. Ahmed, J. Phys. D: Appl. Phys. 40, 7057 (2007)
- [31] S. Korkmaz, S. Pat, N. Ekem, M.Z. Balbag, S. Temel, Vacuum 86, 1930 (2012)
- [32] S.H. Mohamed, A.M. Abd El-Rahman, A.M. Salem, L. Pichon, F.M. El-Hossary, J. Phys. Chem. Solids 67, 2351 (2006)
- [33] C. Di Valentin, G. Pacchioni, A. Selloni, Phys. Rev. B 70, 085116 (2004)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv124n129kz