PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 124 | 1 | 137-140
Article title

Silicon Etching in XeF_2 Environment

Content
Title variants
Languages of publication
EN
Abstracts
EN
Enhancement of silicon etching rate in XeF_2 environment is considered by a proposed model, which includes processes of adsorption, activation, chemical reactions, relaxation, desorption, and sputtering. The enhancement of silicon etching rate is explained by considering hydrocarbon molecules from background gas contamination in the vacuum chamber, and assuming that hydrocarbon radicals enhance the etching rate. The composition of the adsorbed layer during silicon etching in XeF_2 environment is calculated. It is found that hydrocarbon radicals intensify reaction of XeF_2 molecules with Si atoms on the surface and that this changes the kinetics of the etching rate. Using the obtained theoretical results the difference in kinetics of the etching rates of first and subsequent run is explained.
Keywords
EN
Year
Volume
124
Issue
1
Pages
137-140
Physical description
Dates
published
2013-07
received
2011-02-09
revised
2013-03-11
(unknown)
2013-05-01
References
  • [1] J. Jeon, A.H. Ma, K. Khosraviani, A.M. Leung, in: 2007 Canadian Conf. Electrical and Computer Engineering, Vancouver, Institute of Electrical and Electronics Engineers, Vancouver 2007, p. 963
  • [2] V.K. Brel, N.S. Pirkuliev, N.S. Zefirov, Russ. Chem. Rev. 70, 231 (2001)
  • [3] B. Bahreyni, C. Shafai, J. Vac. Sci. Technol. A 20, 1850 (2002)
  • [4] H.F. Winters, D.B. Graves, D. Humbird, S. Tougaard, J. Vac. Sci. Technol. A 25, 96 (2007)
  • [5] R.C. Hefty, J.R. Holt, M.R. Tate, S.T. Ceyer, J. Chem. Phys. 129, 214701 (2008)
  • [6] R.C. Hefty, J.R. Holt, M.R. Tate, S.T. Ceyer, J. Chem. Phys. 130, 164714 (2009)
  • [7] P.G.M. Sebel, L.J.F. Hermans, H.C.W. Beijerinck, J. Vac. Sci. Technol. A 17, 755 (1999)
  • [8] P. Verdonck, C.M. Hasenack, R.D. Mansano, J. Vac. Sci. Technol. B 14, 538 (1996)
  • [9] T. Makino, H. Nakamura, M. Asano, J. Electrochem. Soc. 128, 103 (1981)
  • [10] L.K. White, J. Maa, Appl. Phys. Lett. 46, 1050 (1985)
  • [11] R. Knizikevičius, A. Galdikas, Lith. J. Phys. 41, 55 (2001)
  • [12] R. Knizikevičius, Lith. J. Phys. 43, 135 (2003)
  • [13] R. Knizikevičius, Vacuum 81, 230 (2006)
  • [14] R. Knizikevičius, Microelectron. Eng. 86, 55 (2009)
  • [15] J.W. Coburn, H.F. Winters, J. Appl. Phys. 50, 3189 (1979)
  • [16] D. Humbird, D.B. Graves, J. Appl. Phys. 96, 791 (2004)
  • [17] D. Humbird, D.B. Graves, J. Vac. Sci. Technol. A 23, 31 (2005)
  • [18] F. Gou, A.W. Kleyn, M.A. Gleeson, Int. Rev. Phys. Chem. 27, 229 (2008)
  • [19] Y. Fujikawa, S. Kuwano, K.S. Nakayama, T. Nagao, J.T. Sadovski, R.Z. Bahktizin, T. Sakurai, Y. Asari, J. Nara, T. Ohno, J. Chem. Phys. 129, 234710 (2008)
  • [20] Y. Asari, J. Nara, T. Ohno, Surf. Sci. 605, 225 (2011)
  • [21] M.J.M. Vugts, M.F.A. Eurlings, L.J.F. Hermans, H.C.W. Beijerinck, J. Vac. Sci. Technol. A 14, 2780 (1996)
  • [22] J.L. Mauer, J.S. Logan, L.B. Zielinski, G.C. Schwartz, J. Vac. Sci. Technol. 15, 1734 (1978)
  • [23] G.J.P. Joosten, M.J.M. Vugts, H.J. Spruijt, H.A.J. Senhorst, H.C.W. Beijerinck, J. Vac. Sci. Technol. A 12, 636 (1994)
  • [24] P.G.M. Sebel, L.J.F. Hermans, H.C.W. Beijerinck, J. Vac. Sci. Technol. A 18, 2759 (2000)
  • [25] R.A. Haring, A. Haring, F.W. Saris, A.E. de Vries, Appl. Phys. Lett. 41, 174 (1982)
  • [26] R. Knizikevičius, Vacuum 79, 119 (2005)
  • [27] H.F. Winters, D. Haarer, Phys. Rev. B 36, 6613 (1987)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv124n128kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.