Preferences help
enabled [disable] Abstract
Number of results
2013 | 124 | 1 | 78-87
Article title

Wettability of Ceramic Substrates by Silver Based Alloys

Title variants
Languages of publication
The temperature dependence of wettability (wetting angle, Θp(T)) for Ag-based melts on graphite and Al_2O_3 substrates is compared. Typical alloying effects are found, as the Ag host metal is gradually replaced by various metallic elements. The essence of alloying lies in the change of the electron/atom (e/a) ratio. This ratio is also manifested in the shift of wetting angles on the same substrate. The effect is also supported by the calculations based on the rigid band model, and is also in qualitative agreement with the Hume-Rothery rules. Nevertheless, the effects are partially smeared by other (metallurgical) factors, like the interaction between the oxygen-alloying elements and by the graphite substrate-oxygen interaction. In contrast, such effects are not pronounced in the case of Al_2O_3 substrates. As a consequence, Θp(T) exhibits an opposite trend in the case of two substrates. Crossovers of the Θp(T) curves were often found. The positions of crossovers depend on the chemical character and concentration of solute atoms. Segregation and epitaxial texture formation after solidification were also observed in certain alloy drops, especially in high concentration range. This phenomenon is not yet explained in every detail.
Physical description
  • Budapest University of Technology and Economics, Department of Automobiles and Vehicle Manufacturing Stoczek u. 4, H-1111 Budapest, Hungary
  • Budapest University of Technology and Economics, Department of Automobiles and Vehicle Manufacturing Stoczek u. 4, H-1111 Budapest, Hungary
  • [1] M. Judd, K. Brindley, Soldering in Electronics Assembly, 2nd ed., Newnes, Oxford (UK) 1999
  • [2] J.H. Lau, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGraw-Hill, New York 1997
  • [3] K.N. Tu, Solder Joint Technology: Materials, Properties, and Reliability, Springer, New York 2007
  • [4] C.-C. Fu, C.-C. Chen, J. Taiwan Inst. Chem. Eng. 42, 350 (2011)
  • [5] M. Erinç, P.J.G. Schreurs, G.Q. Zhang, M.G.D. Geers, J. Mater. Sci., Mater. Electron. 16, (10) 693 (2005)
  • [6] K.-L. Lin, C.-L. Shih, J. Electron. Mater. 32, 95 (2003)
  • [7] L.J. Matienzo, R.R. Schaffer, J. Mater. Sci. 26, 787 (1991)
  • [8] L.R. Garcia, W.R. Osório, L.C. Peixoto, A. Garcia, J. Electron. Mater. 38, 2405 (2009)
  • [9] T. Markovits, J. Takács, in: LANE 2004, Erlangen 2004, p. 263
  • [10] A. Kroupa, A.T. Dinsdale, A. Watson, J. Vrestal, J. Vízdal, A. Zemanova, JOM 59, 20 (2007)
  • [11] G. Zeng, S. Xue, L. Zhang, L. Gao, Y. Hu, Z. Lai, J. Alloys Comp. 509, 7152 (2011)
  • [12] M. Abtew, G. Selvaduray, Mater. Sci. Eng. 27, 95 (2000)
  • [13] W.H. Zhong, Y.C. Chan, M.O. Alam, B.Y. Wu, J.F. Guan, J. Alloys Comp. 414, 123 (2006)
  • [14] C.M. Garner, V. Gupta, V. Bissessur, A. Kumar, R. Aspandiar, in: Proc. Third EPTC, Singapore, Eds. L.T. Beng, C. Lee, T.K. Chuan, Singapore 2000, p. 6
  • [15] P. Casey, M. Pecht, in: Proc. Fourth Int. Symp. EMP, Taiwan 2002, p. 15
  • [16] Z. Weltsch, A. Lovas, J. Machine Manufact. XLIX, 40 (2009)
  • [17] Z. Weltsch, A. Lovas, J. Takács, A. Cziráki, G. Tichy, A.L. Toth, L. Illés, Solid State Phenom. 159, 117 (2010)
  • [18] Z. Weltsch, A. Lovas, Mater. Sci. Forum 659, 109 (2010)
  • [19] Z. Weltsch, A. Lovas, G. Tichy, Z. Vandrus, Perner's Contact, Special Issue 2, Vol. VI, Pardubice 2011, p. 221
  • [20] J. Hlinka, Z. Weltsch, J. Berzy, A. Szmejkál, Perner's Contact, Special Issue 2, Vol. VI, Pardubice 2011, p. 64
  • [21] Z. Weltsch, A. Lovas, J. Takács, A. Cziráki, A.L. Toth, G. Kaptay, Appl. Surf. Sci. 268, 52 (2013)
  • [22] B.C. Allen, in: Liquid Metals (Chemistry and Physics), Ed. S.Z. Beer, Marcel Dekker, New York 1972, p. 165
  • [23] R.W. Cahn, in: Physical Metallurgy, Ed. T.B. Massalski, North-Holland Physics, Amsterdam 1983, Ch. 4
  • [24] W. Hume-Rothery, in: Phase Stability in Metals and Alloys, Eds. P.S. Rudman, J. Stringer, R.I. Jaffee, McGraw-Hill, New York 1967
  • [25] H. O'Neill, Hardness Measurements of Metals and Alloys, Chapman and Hall, London 1967
  • [26] S. Flügge, Electrical Conductivity, Springer-Verlag, Berlin 1956, p. 208
  • [27] Alloy Phase Diagrams Centre, ASM International, Materials Park (OH) 2006
  • [28] D.W. Hoffman, J.W. Cahn, Surf. Sci. 31, 368 (1972)
  • [29] D.W. Hoffman, J.W. Cahn, Acta Metallurg. 22, 1205 (1974)
  • [30] J.M. Ziman, Philos. Mag. 6, 1013 (1961)
  • [31] Sólyom Jenő, Fundamentals of the Physics of Solids II: Electronic Properties, ELTE Eötvös Kiadó, Budapest 2003, p. 602, (in Hungarian)
  • [32] Electronic Properties, Wiley, New York 1997
  • [33] C. Kittel, Introduction to Solid State Physics, Mûszaki Könyvkiadó, Budapest 1981, (in Hungarian)
  • [34] J.P. Fulton, M. Namkung, B. Wincheski, in: Rev. of Progress in Quantitative Nondestructive Evaluation, Eds. D.O. Thompson, D.E. Chimenti, Plenum Press, Brunswick (MA) 1993, p. 1611
  • [35] G.S. Noals, J. Sharp, H.J. Goldsmid, Thermoelectrics. Basic Principles and New Materials, Developments, Springer, Berlin 2001
  • [36] A. Szabo, A. Lovas, J. Machine Manufact. XLIX, 31 (2009)
  • [37] A. Szabó, Z. Weltsch, A. Lovas, Mater. Sci. Forum 659, 343 (2010)
  • [38] F.D. Richardson, Physical Chemistry of Melts in Metallurgy, Vol. 2, Academic Press, London 1974
  • [39] G. Kaptay, J. Mater. Sci. 40, 2125 (2005)
  • [40] DoITPoMS, University of Cambridge,
  • [41] Z. Weltsch, A. Lovas, A. Cziráki, G. Tichy, A.L. Toth, Int. J. Appl. Mech. Eng. 15, 389 (2010)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.