Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 124 | 1 | 74-77

Article title

Solution Growth of Well-Aligned ZnO Nanorods on Sapphire Substrate

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Vertically well-aligned ZnO nanorods arrays were synthesized on sapphire substrates by chemical bath deposition. Those sapphire substrates were seeded to control the density and orientation of ZnO nanorods using sol-gel method. Well-aligned and uniformly distributed ZnO nanorods in a large scale were obtained with strongly (002) preferential orientation. The structural properties were characterized by X-ray diffraction spectrometer and morphological characteristics were analyzed by scanning electron microscopy, respectively. The ZnO nanorods are obvious hexangular wurtzite structure and preferentially oriented along the c-axis (002) and growth vertically to the substrates. The optical properties were further thoroughly studied. What is more, the influences of the strain between substrate and ZnO nanorods due to thickness of the ZnO seed-layer on the characteristics and optical properties of ZnO were also analyzed.

Keywords

EN

Year

Volume

124

Issue

1

Pages

74-77

Physical description

Dates

published
2013-07
received
2012-12-18
(unknown)
2013-04-11

Contributors

author
  • Tianjin Institute of Urban Construction, Tianjin 300384, P.R. China
author
  • The Key Lab of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials, Ministry of Education, TEDA Applied Physics School, Nankai University, Tianjin 300475, P.R. China
author
  • The Key Lab of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials, Ministry of Education, TEDA Applied Physics School, Nankai University, Tianjin 300475, P.R. China
author
  • The Key Lab of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials, Ministry of Education, TEDA Applied Physics School, Nankai University, Tianjin 300475, P.R. China
author
  • The Key Lab of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials, Ministry of Education, TEDA Applied Physics School, Nankai University, Tianjin 300475, P.R. China
author
  • The Key Lab of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials, Ministry of Education, TEDA Applied Physics School, Nankai University, Tianjin 300475, P.R. China

References

  • [1] N. Hongsith, S. Choopun, J.C. Mai, Science 37, 48 (2010)
  • [2] H.K. Liang, S.F. Yu, H.Y. Yang, Appl. Phys. Lett. 96, 101116 (2010)
  • [3] O. Lupan, T. Pauporte, B. Viana, I.M. Tiginyanu, V.V. Ursaki, R. Cortes, Appl. Mater. Inter. 2, 2083 (2010)
  • [4] Z. Guo, H. Zhang, D.X. Zhao, Y.C. Liu, B. Yao, B.H. Li, Z.Z. Zhang, D.Z. Shen, Appl. Phys. Lett. 97, 173508 (2010)
  • [5] M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, G. Kiriakidis, Thin Solid Films 515, 551 (2006)
  • [6] M.S. Kim, K.G. Yim, S. Kim, G. Nam, Lee, D.-Y. Kim, Jin Soo, Kim, Jong Su, J.-Y. Leem, Acta Phys. Pol. A 121, 217 (2012)
  • [7] G.W. Cong, H.Y. Wei, P.F. Zhang, W.Q. Peng, J.J. Wu, X.L. Liu, C.M. Jiao, W.G. Hu, Q.S. Zhu, Z.G. Wang, Appl. Phys. Lett. 87, 231903 (2005)
  • [8] S. Xu, Y.G. Wei, M. Kitkhsm, J. Liu, W.J. Mai, D. Davidovic, R.L. Snyder, Z.L. Wang, J. Am. Chem. Soc. 130, 14958 (2008)
  • [9] Q.X. Zhao, L.L. Yang, M. Willander, B.E. Sernelius, P.O. Holtz, J. Appl. Phys. 104, 073526 (2008)
  • [10] G.Z. Jia, Y.F. Wang, J.H. Yao, J. Ovonic. Res. 6, 303 (2010)
  • [11] T. Hamada, A. Ito, E. Fujii, D. Chu, K. Kato, Y. Masuda, J. Cryst. Growth 311, 3687 (2009)
  • [12] S.D. Lee, Y.S. Kim, M.S. Yi, J.Y. Choi, S.W. Kim, J. Phys. Chem. C 113, 8954 (2009)
  • [13] H. Zhang, D.R. Yang, X.Y. Ma, N. Du, J.B. Wu, D.L. Que, J. Phys. Chem. B 10, 827 (2006)
  • [14] J.J. Qiu, X.M. Li, W.Z. He, S.J. Park, H.K. Kim, Y.H. Hwang, J.H. Lee, Y.D. Kim, Nanotechnology 20, 155603 (2009)
  • [15] Q. Ahsanulhaq, S.H. Kim, Y.B. Hahn, J. Phys. Chem. Solids 70, 627 (2009)
  • [16] J. Tang, X.R. Yang, Mater. Lett. 60, 3487 (2006)
  • [17] J.H. Jang, J.H. Park, S.G. Oh, J. Ceram. Process. Res. 10, 783 (2009)
  • [18] A. Umar, C. Ribeiro, A. Al-Hajry, Y. Masuda, Y.B. Hahn, J. Phys. Chem. C 113, 14715 (2009)
  • [19] H. Verma, D. Mukherjee, S. Witanachchi, P. Mukherjee, M. Batzill, J. Cryst. Growth 312, 2012 (2010)
  • [20] G.Z. Jia, Y.F. Wang, J.H. Yao, J. Phys. Chem. Solids 73, 495 (2012)
  • [21] G.Z. Jia, Y.F. Wang, J.H. Yao, Digest J. Nanomater. Biostruct. 7, 261 (2012)
  • [22] O. Lupan, L. Chow, L.K. Ono, B.R. Cuenya, G.Y. Chai, H. Khallaf, S. Park, A. Schulte, J. Phys. Chem. C 114, 12401 (2010)
  • [23] R. Ghosh, D. Basak, S. Fujihara, J. Appl. Phys. 96, 2689 (2004)
  • [24] Y. Zhang, H.B. Jia, R.M. Wang, C.P. Chen, X.H. Luo, D.P. Yu, C. Lee, Appl. Phys. Lett. 83, 4631 (2003)
  • [25] C.X. Xu, G.P. Zhu, X. Li, Y. Yang, S.T. Tan, X.W. Sun, C. Lincoln, T.A. Smith, J. Appl. Phys. 103, 094303 (2008)
  • [26] G.W. Cong, H.Y. Wei, P.F. Zhang, W.Q. Peng, J.J. Wu, X.L. Liu, C.M. Jiao, W.G. Hu, Q.S. Zhu, Z.G. Wang, Appl. Phys. Lett. 87, 231903 (2005)
  • [27] S.S. Lo, D. Huang, Langmuir 26, 6762 (2010)
  • [28] H.L. Zhou, P.G. Shao, S.J. Chua, J.A. van Kan, A.A. Bettiol, T. Osipowicz, K.F. Ooi, G.K.L. Goh, F. Watt, Cryst. Growth. Des. 8, 4445 (2008)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv124n115kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.