ArticleOriginal scientific text

Title

Microbial Inactivation by Electric Discharge with Metallic Grid

Authors 1, 1, 2

Affiliations

  1. Department of Physics and Measurements, Faculty of Chemical Engineering, Institute of Chemical Technology in Prague, Technická 5, 166 28, Praha, Czech Republic
  2. Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University in Prague, Studnickova 7, 128 00, Praha, Czech Republic

Abstract

The area of microbial inactivation by the low-temperature plasma produced by DC electric cometary discharge is increased by insertion of an electrically insulated metallic grid between the discharge and the target object. Gram-negative bacteria are almost fully inactivated; an additional zone of incomplete inactivation appears for Gram-positive bacteria and yeasts.

Keywords

52.50.Dg, 52.75.-d, 52.80.Hc, 52.80.-s, 87.19.xb

Bibliography

  1. M. Laroussi, Plasma Process. Polym. 2, 391 (2005)
  2. M. Moreau, N. Orange, M.G.J. Feuilloley, Biotechnol. Adv. 26, 610 (2008)
  3. M.G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, J.L. Zimmerman, New J. Phys. 11, 115012 (2009)
  4. M. Laroussi, IEEE Trans. Plasma Sci. 37, 714 (2009)
  5. J. Ehlbeck, U. Schnabel, M. Polak, J. Winter, Th. von Woedtke, R. Brandenburg, T. von dem Hagen, K.-D. Weltmann, J. Phys. D, Appl. Phys. 44, 013002 (2011)
  6. G. Lloyd, G. Friedman, S. Jafri, G. Schultz, A. Fridman, K. Harding, Plasma Process. Polym. 7, 194 (2010)
  7. Applications of Low-Temperature Gas Plasmas in Medicine and Biology, Eds. M. Laroussi, M.G. Kong, G. Morfill, W. Stolz, Cambridge University Press, Cambridge 2012
  8. V. Scholtz, L. Kommová, J. Julák, Acta Phys. Pol. A 119, 803 (2011)
  9. V. Scholtz, J. Julák, J. Phys., Conf. Ser. 223, 012005 (2010)
  10. V. Scholtz, J. Julák, IEEE Trans. Plasma Sci. 38, 1978 (2010)
  11. M. Laroussi, Plasma generator, Patent No. WO 2006/096716 A2, PCT/US2006/008080, Sep. 14 (2006)
  12. X. Lu, Z. Xiong, F. Zhao, Y. Xian, Q. Xiong, W. Gong, C. Zou, Z. Jiang, Y. Pan, Appl. Phys. Lett. 95, 501 (2009)
  13. Z. Machala, L. Chládeková, M. Pelach, J. Phys. D, Appl. Phys. 43, 001 (2010)
  14. V. Scholtz, J. Julák, V. Kříha, Plasma Process. Polym. 7, 237 (2010)
  15. E. Stoffels, Y.A. Gonzalvo, T.D. Whitmore, D.L. Seymour, J.A. Rees, Plasma Sources Sci. Technol. 16, 549 (2007)
  16. S. Mededovic, B.R. Locke, J. Phys. D, Appl. Phys. 40, 7734 (2007)
  17. H.W. Lee, G.Y. Park, Y.S. Seo, Y.H. Im, S.B. Shim, H.J. Lee, J. Phys. D, Appl. Phys. 44, 053001 (2011)
  18. S. Ikawa, K. Kitano, S. Hamaguchi, Plasma Process. Polym. 7, 33 (2010)
  19. K. Oehmigen, M. Hähnel, R. Brandenburg, Ch. Wilke, K.-D. Weltmann, Th. von Woedtke, Plasma Process. Polym. 7, 250 (2010)
  20. K. Oehmigen, J. Winter, M. Hähnel, Ch. Wilke, R. Brandenburg, K.-D. Weltmann, Th. von Woedtke, Plasma Process. Polym. 8, 904 (2011)
  21. J. Julák, V. Scholtz, S. Kotúčová, O. Janoušková, Phys. Med. 28, 230 (2012)
Pages:
62-65
Main language of publication
English
Received
2012-08-22
Published
2013-07
Exact and natural sciences