Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 124 | 1 | 62-65

Article title

Microbial Inactivation by Electric Discharge with Metallic Grid

Content

Title variants

Languages of publication

EN

Abstracts

EN
The area of microbial inactivation by the low-temperature plasma produced by DC electric cometary discharge is increased by insertion of an electrically insulated metallic grid between the discharge and the target object. Gram-negative bacteria are almost fully inactivated; an additional zone of incomplete inactivation appears for Gram-positive bacteria and yeasts.

Keywords

Contributors

author
  • Department of Physics and Measurements, Faculty of Chemical Engineering, Institute of Chemical Technology in Prague, Technická 5, 166 28, Praha, Czech Republic
  • Department of Physics and Measurements, Faculty of Chemical Engineering, Institute of Chemical Technology in Prague, Technická 5, 166 28, Praha, Czech Republic
author
  • Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University in Prague, Studnickova 7, 128 00, Praha, Czech Republic

References

  • [1] M. Laroussi, Plasma Process. Polym. 2, 391 (2005)
  • [2] M. Moreau, N. Orange, M.G.J. Feuilloley, Biotechnol. Adv. 26, 610 (2008)
  • [3] M.G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, J.L. Zimmerman, New J. Phys. 11, 115012 (2009)
  • [4] M. Laroussi, IEEE Trans. Plasma Sci. 37, 714 (2009)
  • [5] J. Ehlbeck, U. Schnabel, M. Polak, J. Winter, Th. von Woedtke, R. Brandenburg, T. von dem Hagen, K.-D. Weltmann, J. Phys. D, Appl. Phys. 44, 013002 (2011)
  • [6] G. Lloyd, G. Friedman, S. Jafri, G. Schultz, A. Fridman, K. Harding, Plasma Process. Polym. 7, 194 (2010)
  • [7] Applications of Low-Temperature Gas Plasmas in Medicine and Biology, Eds. M. Laroussi, M.G. Kong, G. Morfill, W. Stolz, Cambridge University Press, Cambridge 2012
  • [8] V. Scholtz, L. Kommová, J. Julák, Acta Phys. Pol. A 119, 803 (2011)
  • [9] V. Scholtz, J. Julák, J. Phys., Conf. Ser. 223, 012005 (2010)
  • [10] V. Scholtz, J. Julák, IEEE Trans. Plasma Sci. 38, 1978 (2010)
  • [11] M. Laroussi, Plasma generator, Patent No. WO 2006/096716 A2, PCT/US2006/008080, Sep. 14 (2006)
  • [12] X. Lu, Z. Xiong, F. Zhao, Y. Xian, Q. Xiong, W. Gong, C. Zou, Z. Jiang, Y. Pan, Appl. Phys. Lett. 95, 501 (2009)
  • [13] Z. Machala, L. Chládeková, M. Pelach, J. Phys. D, Appl. Phys. 43, 001 (2010)
  • [14] V. Scholtz, J. Julák, V. Kříha, Plasma Process. Polym. 7, 237 (2010)
  • [15] E. Stoffels, Y.A. Gonzalvo, T.D. Whitmore, D.L. Seymour, J.A. Rees, Plasma Sources Sci. Technol. 16, 549 (2007)
  • [16] S. Mededovic, B.R. Locke, J. Phys. D, Appl. Phys. 40, 7734 (2007)
  • [17] H.W. Lee, G.Y. Park, Y.S. Seo, Y.H. Im, S.B. Shim, H.J. Lee, J. Phys. D, Appl. Phys. 44, 053001 (2011)
  • [18] S. Ikawa, K. Kitano, S. Hamaguchi, Plasma Process. Polym. 7, 33 (2010)
  • [19] K. Oehmigen, M. Hähnel, R. Brandenburg, Ch. Wilke, K.-D. Weltmann, Th. von Woedtke, Plasma Process. Polym. 7, 250 (2010)
  • [20] K. Oehmigen, J. Winter, M. Hähnel, Ch. Wilke, R. Brandenburg, K.-D. Weltmann, Th. von Woedtke, Plasma Process. Polym. 8, 904 (2011)
  • [21] J. Julák, V. Scholtz, S. Kotúčová, O. Janoušková, Phys. Med. 28, 230 (2012)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv124n112kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.