PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 124 | 1 | 56-61
Article title

Gaussian Beam Diffraction in Inhomogeneous and Nonlinear Saturable Media

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The method of complex geometrical optics is presented, which describes Gaussian beam diffraction and self-focusing in smoothly inhomogeneous and nonlinear saturable media of cylindrical symmetry. Complex geometrical optics reduces the problem of Gaussian beam diffraction and self-focusing in inhomogeneous and nonlinear media to the system of the first order ordinary differential equations for the complex curvature of the wave front and for Gaussian beam amplitude, which can be readily solved both analytically and numerically. As a result, complex geometrical optics radically simplifies the description of Gaussian beam diffraction and self-focusing effects as compared to the other methods of nonlinear optics such as: variational method approach, method of moments, and beam propagation method. The power of complex geometrical optics method is presented on the example of Gaussian beam width evolution in saturable fibre with either focusing and defocusing refractive profiles. Besides, the influence of initial curvature of the wave front on Gaussian beam evolution in nonlinear saturable medium is discussed in this paper.
Keywords
Contributors
author
  • Institute of Physics, West Pomeranian University of Technology, al. Piastów 48, 70-310 Szczecin, Poland
References
  • [1] Yu.A. Kravtsov, Radiophys. Quantum Electron. 10, 719 (1967)
  • [2] J.B. Keller, W. Streifer, J. Opt. Soc. Am. 61, 40 (1971)
  • [3] G.A. Deschamps, Electron. Lett. 7, 684 (1971)
  • [4] Yu.A. Kravtsov, G.W. Forbes, A.A. Asatryan, in: Progress in Optics, Ed. E. Wolf, Vol. 39, Elsevier, Amsterdam 1999, p. 3
  • [5] S.J. Chapman, J.M. Lawry, J.R. Ockendon, R.H. Tew, SIAM Rev. 41, 417 (1999)
  • [6] Yu.A. Kravtsov, P. Berczynski, Stud. Geophys. Geod. 51, 1 (2007)
  • [7] Yu.A. Kravtsov, Geometrical Optics in Engineering Physics, Alpha Science International, UK 2005
  • [8] P. Berczynski, Yu.A. Kravtsov, Phys. Lett. A 331, 265 (2004)
  • [9] P. Berczynski, K.Yu. Bliokh, Yu.A. Kravtsov, A. Stateczny, J. Opt. Soc. Am. A 23, 1442 (2006)
  • [10] P. Berczynski, Yu.A. Kravtsov, A.P. Sukhorukov, Physica D: Nonlin. Phenom. 239, 241 (2010)
  • [11] P. Berczynski, J. Opt. 13, 035707 (2011)
  • [12] H. Kogelnik, Appl. Opt. 4, 1562 (1965)
  • [13] V.M. Babich, V.S. Buldyrev, Short-Wavelength Diffraction Theory: Asymptotic Methods, Springer Verlag, Berlin 1991]
  • [14] J.A. Arnaud, Beams and Fiber Optics, Academic Press, New York 1976
  • [15] G. Agrawal, Nonlinear Fiber Optics, Academic Press, New York 1989
  • [16] Y. Chen, Opt. Lett. 16, 4 (1991)
  • [17] M. Karlsson, Phys. Rev. A 46, 2726 (1992)
  • [18] S. Konar, A. Sengupta, J. Opt. Soc. Am. B 11, 1644 (1994)
  • [19] Z. Jovanoski, R.A. Sammut, Phys. Rev. E 50, 4087 (1994)
  • [20] A. Biswas, Appl. Math. Comput. 153, 369 (2004)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv124n111kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.