Title variants
Languages of publication
Abstracts
The performance of an air standard Atkinson cycle is analyzed using finite-time thermodynamics. The results show that if the compression ratio is less than a certain value, the power output increases with increasing relative air-fuel ratio, while if the compression ratio exceeds a certain value, the power output first increases and then starts to decrease with increase of relative air-fuel ratio. With a further increase in compression ratio, the increase in relative air-fuel ratio results in decrease of the power output. Throughout the compression ratio range, the power output increases with increase of fuel mass flow rate. The results also show that if the compression ratio is less than a certain value, the power output increases with increase of residual gases, on the contrast, if the compression ratio exceeds a certain value, the power output decreases with increase of residual gases. The results obtained herein can provide guidance for the design of practical Atkinson engines.
Discipline
Journal
Year
Volume
Issue
Pages
29-34
Physical description
Dates
published
2013-07
received
2013-03-26
(unknown)
2013-04-17
Contributors
author
- Department of Agriculture Machine Mechanics, Shahrekord University, P.O. Box 115, Shahrekord, Iran
References
- [1] http://en.wikipedia.org/wiki/Atkinson_cycle
- [2] K. Nobuki, N. Kiyoshi, K. Toshihiro, Development of new 1.8-l engine for hybrid vehicles, SAE technical paper no. 2009-01-1061, 2009
- [3] P.Y. Wang, S.S. Hou, Energy Convers. Manag. 46, 2637 (2005)
- [4] Y. Ust, B. Sahin, A. Safa, Acta Phys. Pol. A 120, 412 (2011)
- [5] R. Ebrahimi, J. Energy Inst. 84, 38 (2011)
- [6] A. Parlak, Energy Convers. Manag. 46, 351 (2005)
- [7] R. Ebrahimi, Acta Phys. Pol. A 120, 384 (2011)
- [8] L. Chen, F. Meng, F. Sun, Scientia Iranica 19, 1337 (2012)
- [9] S.S. Hou, J.C. Lin, Acta Phys. Pol. A 120, 979 (2011)
- [10] R. Ebrahimi, Comput. Math. Appl. 62, 2169 (2011)
- [11] R. Ebrahimi, Acta Phys. Pol. A 117, 887 (2010)
- [12] H.S. Leff, Am. J. Phys. 55, 602 (1987)
- [13] Y. Ge, L. Chen, F. Sun, C. Wu, J. Energy Inst. 80, 52 (2007)
- [14] Y. Ge, L. Chen, F. Sun, C. Wu, Appl. Energy 83, 1210 (2006)
- [15] S.S. Hou, Energy Convers. Manag. 48, 1683 (2007)
- [16] J.C. Lin, S.S. Hou, Appl. Energy 84, 904 (2007)
- [17] L. Chen, W. Zhang, F. Sun, Appl. Energy 84, 512 (2007)
- [18] A. Al-Sarkhi, B. Akash, E. Abu-Nada, I. Al-Hinti, Jordan J. Mech. Industr. Eng. 2, 71 (2008)
- [19] L.G. Chen, Y.L. Ge, F.R. Sun, Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 222, 1489 (2008)
- [20] Y. Ust, Int. J. Thermophys 30, 1001 (2009)
- [21] J. Liu, J. Chen, Int. J. Ambient Energy 31, 59 (2010)
- [22] R. Ebrahimi, J. Am. Sci. 6, (2) 12 (2010)
- [23] R. Ebrahimi, Math. Comput. Model. 53, 1289 (2011)
- [24] R. Ebrahimi, Ph.D. Thesis, Université de Valenciennes et du Hainaut-Cambrésis, France 2006 (in French)
- [25] J.B. Heywood, Internal Combustion Engine Fundamentals, Mc-Graw Hill, New York 1988
- [26] G.H. Abd Alla, Energy Convers. Manag. 43, 1043 (2002)
- [27] M. Mercier, Ph.D. Thesis, Université de Valenciennes et du Hainaut Cambrésis, France 2006 (in French)
- [28] A. Hocine, PhD thesis, Université de Valenciennes et du Hainaut-Cambrésis, France 2003 (in French)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv124n106kz