PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 124 | 1 | 6-10
Article title

Power Optimization of a Miller Thermal Cycle with respect to Residual Gases and Equivalence Ratio

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The performance of an air standard Miller cycle is analyzed using finite-time thermodynamics. The relations between the power output and the compression ratio and between the power output and the thermal efficiency are derived by detailed numerical examples. The results show that, throughout the compression ratio range, the power output decreases with increasing residual gases. The results also show that if compression ratio is less than certain value, the power output decreases with increasing equivalence ratio, while if compression ratio exceeds certain value, the power output first increases and then starts to decrease with increasing equivalence ratio. The conclusions of this investigation are of importance when considering the designs of actual Miller engines.
Keywords
Contributors
author
  • Department of Agriculture Machine Mechanics, Shahrekord University, P.O. Box 115, Shahrekord, Iran
References
  • [1] L. Chen, F. Sun, Advances in Finite Time Thermodynamics: Analysis and Optimization, Nova Science Publishers, New York 2004
  • [2] L. Chen, C. Wu, F. Sun, J. Non-Equilib. Thermodyn. 24, 327 (1999)
  • [3] R. Ebrahimi, Acta Phys. Pol. A 117, 887 (2010)
  • [4] P.Y. Wang, S.S. Hou, Energy Convers. Man. 46, 2637 (2005)
  • [5] R. Ebrahimi, Acta Phys. Pol. A 118, 534 (2010)
  • [6] Y. Ust, B. Sahin, A. Safa, Acta Phys. Pol. A 120, 412 (2011)
  • [7] R.H. Miller, ASME Trans. 69, 453 (1947)
  • [8] U. Kesgin, Int. Energy Res. 29, 189 (2005)
  • [9] K. Hatamura, M. Hayakawa, T. Goto, M. Hitomi, JSAE Rev. 18, 101 (1997)
  • [10] Y. Fukuzawa, H. Shimoda, Y. Kakuhama, H. Endo, K. Tanaka, Techn. Rev. 38, 146 (2001)
  • [11] A. Al-Sarkhi, B.A. Akash, J.O. Jaber, M.S. Mohsen, E. Abu-Nada, Int. Comm. Heat Mass Transfer 29, 1159 (2002)
  • [12] C. Wu, P.V. Puzinauskas, J.S. Tsai, Appl. Therm. Eng. 23, 511 (2003)
  • [13] Y. Ge, L. Chen, F. Sun, C. Wu, Int. Comm. Heat Mass Transfer 32, 1045 (2005)
  • [14] Y. Ge, L. Chen, F. Sun, C. Wu, J. Appl. Energy 81, 397 (2005)
  • [15] Y. Ge, L. Chen, F. Sun, C. Wu, Int. J. Ambient Energy 26, 203 (2005)
  • [16] A. Al-Sarkhi, J.O. Jaber, S.D. Probert, J. Appl. Energy 83, 343 (2006)
  • [17] L. Chen, W. Zhang, F. Sun, J. Appl. Energy 84, 512 (2007)
  • [18] R. Ebrahimi, Appl. Math. Model. 36, 4073 (2012)
  • [19] J.B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill, New York 1988
  • [20] G.H. Abd Alla, Energy Convers. Man. 43, 1043 (2002)
  • [21] Y. Ust, B. Sahin, O.S. Sogut, J. Appl. Energy 82, 23 (2005)
  • [22] S.S. Hou, J.C. Lin, Acta Phys. Pol. A 120, 979 (2011)
  • [23] J.M. Gordon, M. Huleihil, J. Appl. Phys. 72, 829 (1992)
  • [24] M. Mercier, Ph.D. Thesis, Université de Valenciennes et du Hainaut-Cambrésis, France 2006 (in French)
  • [25] A. Hocine, Ph.D. thesis, Université de Valenciennes et du Hainaut-Cambrésis, France 2003
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv124n102kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.