PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 123 | 6 | 1078-1084
Article title

Acoustic Impedance of an Annular Piston Wobbling in a Flat Screen Around a Semi-infinite Circular Cylinder

Content
Title variants
Languages of publication
EN
Abstracts
EN
A rigorous solution is presented for the problem of sound radiation by an oscillating and wobbling annular piston embedded concentrically in a perpendicular flat screen surrounding a semi-infinite circular cylindrical baffle. Two forms of the Green's function of the considered region are used. The acoustic impedance is presented in its integral form useful for numerical calculations which enable studying the effect of the acoustic waves scattering on the cylindrical baffle and the asymmetry of vibration velocity on the piston on the resultant acoustic impedance of the wobbling piston. It is shown that in the case of the vibrating piston under consideration, the reciprocity of acoustic impedance related to two modes of rigid body motion, oscillating and wobbling, does not occur.
Keywords
Year
Volume
123
Issue
6
Pages
1078-1084
Physical description
Dates
published
2013-06
References
  • [1] B. Wyrzykowska, in: Proc. 2nds Conf. on Ultrasonics, Warsaw 1956, p. 99
  • [2] R.L. Pritchard, J. Acoust. Soc. Amer. 32, 730 (1960)
  • [3] D.T. Porter, J. Acoust. Soc. Amer. 36, 1154 (1964)
  • [4] W. Thompson Jr., J. Sound Vibr. 17, 221 (1971)
  • [5] P.R. Stepanishen, J. Acoust. Soc. Amer. 56, 305 (1974)
  • [6] T. Mellow, L. Kärkkäinen, J. Acoust. Soc. Amer. 118, 1311 (2005)
  • [7] T. Mellow, J. Acoust. Soc. Amer. 120, 90 (2006)
  • [8] W.P. Rdzanek, W.J. Rdzanek, D. Pieczonka, Archiv. Acoust. 37, 411 (2012)
  • [9] H. Levine, F.G. Leppington, J. Sound Vibr. 121, 269 (1988)
  • [10] W.P. Rdzanek, W.J. Rdzanek, K. Szemela, J. Comp. Acoust. 18, 335 (2010)
  • [11] W.P. Rdzanek, W.J. Rdzanek, K. Szemela, Acta Physica Polonica A 118, 141 (2010)
  • [12] D. Iwański J. Wiciak, Acta Physica Polonica A 119, 972 (2011)
  • [13] M.-R. Lee R. Singh, J. Acoust. Soc. Amer. 95, 3311 (1994)
  • [14] H. Lee R. Singh, J. Sound Vibr. 282, 313 (2005)
  • [15] J.P. Arenas, J. Comp. Acoust. 16, 321 (2008)
  • [16] V. Mangulis, J. Acoust. Soc. Amer. 40, 349 (1966)
  • [17] W.P. Rdzanek, W.J. Rdzanek, A. Różycka, Archives of Acoustics 32, 7 (2007)
  • [18] A. Sommerfeld, Partial Differential Equations in Physics, Academic Press, New York 1949
  • [19] A. Rubinowicz, Reports on Mathematical Physics 2, 93 (1971)
  • [20] G.N. Watson, A Treatise on The Theory of Bessel Functions, Cambridge University Press, Cambridge 1944
  • [21] N.W. McLachlan, Bessel Functions for Engineers, Clarendon Press, Oxford 1955
  • [22] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals Series, Vol. 2: Special Functions, Gordon Breach, New York 1990
  • [23] J.W.S. Rayleigh, The Theory of Sound, MacMillan, London 1929
  • [24] R.M. Aarts A.J.E.M. Janssen, J. Acoust. Soc. Amer. 113, 2635 (2003)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv123n624kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.