Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 123 | 5 | 956-959

Article title

Dielectric Function of Native Oxide on Ion-Implanted GaAs

Content

Title variants

Languages of publication

EN

Abstracts

EN
The main aim of the reported investigations is the influence of ion implantation on formation of native oxide layers and their optical spectra. Silicon implanted (100)-oriented GaAs crystalline wafers were used as substrates. The samples have been implanted with Ne^{+}, Al^{+}, Ar^{+}, or In^{+} ions at energies of 100, 120, 150, and 250 keV, respectively. The implantations were carried out at a fluence of 1 × 10^{16} cm^{-2} at 300 K. The refraction index spectral dependence for native oxide was approximated using the Cauchy equations. The dielectric function spectra of the native oxide layers on GaAs implanted with different ions have been obtained by variable angle spectroscopic ellipsometer in the 250-900 nm range using complementary information from the Rutherford backscattering/nuclear reactions measurements. The investigations showed that both real and imaginary parts of the dielectric function increase with mass of the ion species used for implantation.

Keywords

EN

Contributors

author
  • Institute of Physics, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
  • Institute of Electron Technology, al. Lotników 32/46, 02-668 Warszawa, Poland
author
  • Institute of Physics, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
author
  • Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow region, Russia

References

  • 1. J. Zhang, T.H. Kosel, D.C. Hall, P. Fay, IEEE Electron Dev. Lett. 29, 143 (2008)
  • 2. J.S. Williams, Mater. Sci. Eng. A 253, 8 (1998)
  • 3. W. Wesch, E. Wendler, T. Bachmann, O. Herre, Nucl. Instrum. Methods Phys. Res. B 96, 290 (1995)
  • 4. T. Lohner, M. Fried, N.Q. Khanh, P. Petrik, H. Wormeester, M.A. El-Sherbiny, Nucl. Instrum. Methods Phys. Res. B 147, 90 (1999)
  • 5. M. Kulik, J. Herec, J. Romanek, Vacuum 63, 761 (2001)
  • 6. W. Wesch, E. Wilk, K. Hehl, Phys. Status Solidi A 70, 243 (1982)
  • 7. M. Kulik, J. Zuk, A. Drozdziel, K. Pyszniak, F.F. Komarov, W. Rzodkiewicz, Mater. Sci. Eng. B 176, 340 (2011)
  • 8. W. Rzodkiewicz, M. Kulik, K. Pyszniak, A.P. Kobzev, Acta Phys. Pol. A 116, 129 (2009)
  • 9. M. Turek, S. Prucnal, A. Drozdziel, K. Pyszniak, Rev. Sci. Instrum. 80, 043304 (2009)
  • 10. M. Turek, S. Prucnal, A. Drozdziel, K. Pyszniak, Nucl. Instrum. Methods Phys. Res. B 269, 700 (2011)
  • 11. Guide to Using WVASE 32, Software for Vase and M44 Ellipsometers, J.A. Woollam Co., Lincoln (NE) 1991
  • 12. J.R. Cameron, Phys. Rev. 90, 839 (1953)
  • 13. M. Mayer, SIMNRA User's Guide, http://www2.if.usp.br/~lamfi/guia-simnra.pdf, Max-Planck-Institut für Plasmaphysik, Garching 2012
  • 14. J.F. Ziegler, SRIM - The Stopping and Range of Ions in Matter, http://www.srim.org (2009)
  • 15. Data in Science and Technology, Semiconductors, Group IV Elements and III-V Compounds, Ed. O. Madelung, Springer-Verlag, Berlin 1991
  • 16. M. Kulik, A.P. Kobzev, D. Jaworska, J. Zuk, J. Filiks, Vacuum 81, 1124 (2007)
  • 17. S. Zollner, Appl. Phys. Lett. 63, 2523 (1993)
  • 18. J.A. Woollam Co Inc., WVASE 32 program v. 3.441, tabulated at UNL, Nebrasca, USA
  • 19. S.K.J. Al-Ani, K.I. Arshak, C.A. Hogarth, J. Mater. Sci. 19, 1737 (1984)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv123n545kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.