Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 123 | 5 | 952-955

Article title

Implantation Temperature Effects on the Nanoscale Optical Pattern Fabrication in a-SiC:H Films by Ga^{+} Focused Ion Beams

Content

Title variants

Languages of publication

EN

Abstracts

EN
This work is related to a novel approach of providing some new generation ultrastable (> 50 years), ultrahigh density (> 1 Tbit/sq.in.) data storage for archival applications. We used ion-implantation to write nanoscale data into hydrogenated amorphous silicon carbide (a-SiC:H) films. Wide bandgap a-SiC:H samples, Ga^{+} focused ion beam implanted, have been prepared. A range of samples has been focused ion beam patterned under different implantation conditions, with emphasis on different substrate temperatures (typically from 0C temperature to around room temperature). Some of the room temperature implanted samples were further annealed at + 250C in vacuum. The focused ion beam patterned samples were then analysed using near-field techniques, like atomic force microscopy, to define optimum implantation conditions and the resulting consequences for archival data storage applications. The atomic force microscopy analysis of Ga^{+} focused ion beam implanted a-Si_{1-x}C_{x}:H samples at room temperature and at 0C revealed an increase of both the depth and the width of the individual lines within the focused ion beam written patterns at the lower temperature, as a result of an increased ion beam induced sputtering yield, in good agreement with the previous results for the case of Ga^+ broad beam implantation in a-Si_{1-x}C_{x}:H and again suggesting that the best conditions for optical data storage for archival storage applications would be using Ga^+ ion implantation in a-SiC:H films with an optimal dose at room temperatures. Similarly, the atomic force microscopy results confirm that no advantage is expected to result from post-implantation annealing treatments.

Keywords

EN

Contributors

author
  • Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia, Bulgaria
  • University of Exeter, College of Engineering, Mathematics and Physical Sciences, Harrison Building, North Park Rd, Exeter EX4 4QF, UK
author
  • University of Exeter, College of Engineering, Mathematics and Physical Sciences, Harrison Building, North Park Rd, Exeter EX4 4QF, UK
author
  • University of Exeter, College of Engineering, Mathematics and Physical Sciences, Harrison Building, North Park Rd, Exeter EX4 4QF, UK
author
  • Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, P.O.B. 51 01 19, 01314 Dresden, Germany
author
  • Institute of Physics, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland

References

  • 1. J. Bullot, M.P. Schmidt, Phys. Status Solidi B 143, 345 (1987)
  • 2. J.A. Powell, L. Matus, in: Amorphous and Crystalline Silicon Carbide, Eds. G.L. Harris, C.Y.W. Yang, Springer, Berlin 1989
  • 3. Amorphous and Microcrystalline Semiconductor Devices, Ed. J. Kanicki, Artech House, Boston 1991
  • 4. T. Nagai, H. Yamamoto, I. Kobayashi, J. Phys. E 15, 520 (1982)
  • 5. J.K. Hirvonen, Ion Implantation and Ion Beam Processing of Materials, North Holland, Amsterdam 1984
  • 6. J.F. Ziegler, Ion Implantation, Academic Press, New York 1988
  • 7. K. Böhringer, K. Jousten, S. Kalbitzer, Nucl. Instrum. Methods Phys. Res. B 30, 289 (1988)
  • 8. B. Ruttensperger, G. Krötz, G. Müller, G. Derst, S. Kalbitzer, J. Non-Cryst. Solids 137-138, 635 (1991)
  • 9. G. Müller, Nucl. Instrum. Methods Phys. Res. B 80-81, 957 (1993)
  • 10. T. Tsvetkova, in: Beam Processing of Advanced Materials, Eds. J. Singh, S. Copley, J. Mazumder, ASM International, Metals Park 1996, p. 207
  • 11. T. Tsvetkova, S. Takahashi, A. Zayats, P. Dawson, R. Turner, L. Bischoff, O. Angelov, D. Dimova-Malinovska, Vacuum 79, 94 (2005)
  • 12. T. Tsvetkova, S. Takahashi, A. Zayats, P. Dawson, R. Turner, L. Bischoff, O. Angelov, D. Dimova-Malinovska, Vacuum 79, 100 (2005)
  • 13. S. Takahashi, P. Dawson, A.V. Zayats, L. Bischoff, O. Angelov, D. Dimova-Malinovska, T. Tsvetkova, P.D. Townsend, J Phys. D, Appl. Phys. 40, 7492 (2007)
  • 14. L. Bischoff, J. Teichert, S. Kitova, T. Tsvetkova, Vacuum 69, 73 (2002)
  • 15. T. Tsvetkova, O. Angelov, M. Sendova-Vassileva, D. Dimova-Malinovska, L. Bischoff, G.J. Adriaenssens, W. Grudzinski, J. Zuk, Vacuum 70, 467 (2003)
  • 16. D.E. Hole, P.D. Townsend, J.D. Barton, L.C. Nistor, J. Van Landuyt, J. Non-Cryst. Sol. 180, 266 (1995)
  • 17. T. Tsvetkova, C.D. Wright, S. Kitova, L. Bischoff, J. Zuk, Nucl. Instrum. Methods Phys. Res. B, 2013, to be published
  • 18. Philos. Trans. R. Soc. A 362, 699 (2004)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv123n544kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.