PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 123 | 5 | 943-947
Article title

Chemical Composition of Native Oxide Layers on In^{+} Implanted and Thermally Annealed GaAs

Content
Title variants
Languages of publication
EN
Abstracts
EN
Semi-insulating GaAs wafers have been implanted with 250 keV In^{+} ions at a fluence of 3 × 10^{16} cm^{-2}. The samples prepared in this way were subsequently annealed at a temperature of 600°C or 800°C for 2 h. Thicknesses of the native oxide layers on implanted GaAs after samples storage in air were evaluated using the Rutherford backscattering spectrometry with the nuclear reaction O^{16}(α,α)O^{16} method. The chemical composition of native oxide layers on In^{+} implanted and annealed GaAs has been studied using X-ray photoelectron spectroscopy. As_{2}O_{3}, As_{2}O_{5}, Ga_{2}O_{3}, GaAs, InAs and InAsO_4 compounds were detected in these layers.
Keywords
EN
Contributors
author
  • Institute of Physics, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
  • Department of Inorganic Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 2, 20-031 Lublin, Poland
author
  • Institute of Physics, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
author
  • Institute of Applied Physics Problems, Belarussian State University, Minsk, Belarus
author
  • Institute of Physics, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
References
  • 1. D.A. Allwood, R.T. Carline, N.J. Mason, C. Pickering, B.K. Tanner, P.J. Walker, Thin Solid Films 364, 33 (2000)
  • 2. A. Golan, J. Bregman, Y. Shapira, M. Eizenberg, J. Appl. Phys. 69, 1494 (1991)
  • 3. A.N. Akimov, L.A. Vlasukova, F.F. Komarov, M. Kulik, J. Appl. Spectrosc. 59, 533 (1993)
  • 4. D.E. Aspnes, A.A. Studna, Phys. Rev. B 27, 985 (1983)
  • 5. M. Turek, S. Prucnal, A. Drozdziel, K. Pyszniak, Rev. Sci. Instrum. 80, 043304 (2009)
  • 6. L.C. Feldman, J.W. Mayer, Fundamentals of Surface and Thin Film Analysis, North-Holland, New York 1986
  • 7. J.R. Cameron, Phys. Rev. 90, 839 (1953)
  • 8. W. Olovsson, T. Marten, E. Holmstrom, B. Johansson, I. Abrikosov, J. Electron Spectrosc. Relat. Phenom. 178, 88 (2010)
  • 9. M. Kulik, S.O. Saied, J. Liskiewicz, Nukleonika 44, 167 (1999)
  • 10. M. Procop, J. Electron Spectrosc. Relat. Phenom. 59, R1 (1992)
  • 11. A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solutions, Marcel Dekker, New York 1985
  • 12. S. Oktyabrsky, P. Ye, Fundamentals of III-V Semiconductor MOSFETs, Springer, 2010
  • 13. F. Shi, K.L. Chang, K.C. Hsieh, Proc. Institution of Mechanical Engineers, Part N: J. Nanoengin. Nanosys. 221, 37 (2007)
  • 14. M. Kulik, A.P. Kobzev, D. Jaworska, J. Zuk, J. Filiks, Vacuum 81, 1124 (2007)
  • 15. P.A. Bertrand, J. Vacuum Sci. Technol. 18, 28 (1981)
  • 16. G. Hollinger, R.S. Kabbani, M. Gendry, Phys. Rev. B 49, 11159 (1994)
  • 17. H. Morota, S. Adachi, J. Appl. Phys. 105, 123520 (2009)
  • 18. K. Nakajima, J. Okazaki, J. Electrochem. Soc. 132, 1424 (1985)
  • 19. K.A. Bertness, W.G. Petro, J.A. Silberman, D.J. Friedman, W.E. Spicer, J. Vacuum Sci. Technol. 3, 1464 (1985)
  • 20. A. Ismail, J.M. Palau, L. Lassabatere, J. Appl. Phys. 60, 1730 (1986)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv123n542kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.