Journal
Article title
Title variants
Languages of publication
Abstracts
Physical and mathematical models as well as numerical algorithms for simulation of advanced technological processes, such as thermal annealing after low-energy ion implantation used during the VLSI fabrication are presented. In this paper we propose a model that treats the migration of the impurity atoms at the thermal annealing. We take into account process nonlinearity and influence of non-uniform defects distribution as well as electric field and elastic stress on the migration of atoms. The redistribution of point defects as well as the diffusion of nonequilibrium impurity interstitials in silicon are described by time-dependent quasi-linear parabolic equations. The results of numerical calculations are presented as well.
Discipline
Journal
Year
Volume
Issue
Pages
804-808
Physical description
Dates
published
2013-05
Contributors
author
- Institute of Applied Physics Problems, 7 Kurchatov St., 220108 Minsk, Belarus
author
- Belarussian State University of Informatics and Radioelectronics, 6 Brovki St., 220113 Minsk, Belarus
author
- Institute of Mathematics, Academy of Sciences of Belarus, 11 Surganov St., 220072 Minsk, Belarus
author
- Institute of Applied Physics Problems, 7 Kurchatov St., 220108 Minsk, Belarus
author
- Institute of Applied Physics Problems, 7 Kurchatov St., 220108 Minsk, Belarus
author
- Institute of Applied Physics Problems, 7 Kurchatov St., 220108 Minsk, Belarus
author
- Institute of Applied Physics Problems, 7 Kurchatov St., 220108 Minsk, Belarus
References
- 1. S. Solmi, M. Ferri, M. Bersani, D. Giubertoni, V. Soncini, J. Appl. Phys. 94, 4950 (2003)
- 2. D. Girginoudi, N. Georgoulas, A. Thanailakis, E.K. Polychroniadis, Mater. Sci. Eng. B 114-115, 381 (2004)
- 3. A. Ruffell, I.V. Mitchell, P.J. Simpson, J. Appl. Phys. 97, 123518 (2005)
- 4. F.F. Komarov, O.I. Velichko, V.A. Dobrushkin, A.M. Mironov, Phys. Rev. B 74, 035205 (2006)
- 5. A.K. Fedotov, O.I. Velichko, V.A. Dobrushkin, J. Alloys Comp. 382, 283 (2004)
- 6. F.F. Komarov, O.I. Velichko, A.M. Mironov, V.A. Tsurko, G.M. Zayats, Proc. SPIE 6260, 566 (2006)
- 7. B.B. Khina, Def. Diff. Forum 277, 103 (2008)
- 8. R.B. Fair, in Silicon Integrated Circuits, Pt. B, Ed. Kahng Dawon, Academic Press, New York 1981, p. 1
- 9. P. Pichler, in: Computational Microelectronics, Ed. S. Selberherr, Springer, Wien 2004
- 10. S. Solmi, in: Encyclopedia of Materials: Science and Technology, Eds. K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssière, Elsevier Sci., 2001, p. 2331
- 11. J. Pezoldt, P.V. Rybin, D.V. Kulikov, Yu.V. Trushin, R.A. Yankova, M. Voelskow, U. Kreissig, Nucl. Instrum. Methods Phys. Res. B 166/167, 758 (2000)
- 12. O.I. Velichko, A.K. Fedotov, Mater. Sci. Eng. B 99, 567 (2003)
- 13. O.I. Velichko, Appl. Math. Mod. 35, 1134 (2011)
- 14. O.I. Velichko, Yu.P. Shaman, A.K. Fedotov, A.V. Masanik, Comput. Mater. Sci. 43, 279 (2008)
- 15. Y. Lamrani, F. Cristiano, B. Colombeau, E. Scheid, P. Calvo, H. Schäfer, A. Claverie, Nucl. Instrum. Meth. Phys. Res. B 216, 281 (2004)
- 16. A.F. Burenkov, F.F. Komarov, M.A. Kumakhov, Tables of Ion Implantation Spatial Distribution, Gordon and Breach, New York 1986
- 17. A.A. Samarskii, Theory of Difference Schemes, Nauka, Moscow 1977
- 18. O.I. Velichko, A.P. Kavaliova, Physica B 407, 2176 (2012)
- 19. E. Schroer, V. Privitera, F. Priolo, E. Napolitani, A. Carnera, Mater. Sci. Semicond. Proc. 3, 303 (2000)
- 20. F. Boucard, F. Roger, I. Chakarov, V. Zhuk, M. Temkin, X. Montagner, E. Guichard, D. Mathiot, Mater. Sci. Eng. B 124-125, 409 (2005)
- 21. S. Solmi, F. Baruffaldi, R. Canteri, J. Appl. Phys. 69, 2135 (1991)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv123n503kz