Preferences help
enabled [disable] Abstract
Number of results
2013 | 123 | 4 | 752-760
Article title

Phonon Drag and Carrier Diffusion Contributions in Thermoelectric Power of M_3C_{60} (M = K, Rb) Fullerides

Title variants
Languages of publication
The thermoelectric power (S) of M_3C_{60} (M = K, Rb) alkali intercalated fullerides is theoretically investigated by considering the Mott expression within parabolic band approximation to reveal the electron diffusive thermoelectric power (S_{c}^{diff}). We follow the Fermi energy as electron parameter and S_{c}^{diff} discerned linear temperature dependence. S infers a change in slope above transition temperature and becomes almost linear above 70 K for M_3C_{60} alkali intercalated fullerides. As a next step, the phonon drag thermoelectric power (S_{ph}^{drag}) is computed within relaxation time approximation when thermoelectric power is limited by scattering of phonons from defects, grain boundaries, phonons and electrons as carriers. It is noticed that the S_{ph}^{drag} of K_3C_{60} is anomalous and it is an artifact of strong phonon-electron and -phonon scattering mechanism. The thermoelectric power within relaxation time approximation has been taken into account ignoring a possible energy dependence of the scattering rates. Behaviour of S(T) is determined by competition among the several operating scattering mechanisms for the heat carriers and a balance between carrier diffusion and phonon drag contributions in M_3C_{60} (M = K, Rb) alkali intercalated fullerides.
Physical description
  • Materials Science Laboratory, School of Physics, Vigyan Bhawan, Devi Ahilya University, Khandwa Road Campus, Indore, 452001, India
  • Department of Physics, Ranchi College, Ranchi University Ranchi, Jharkhand, 834008, India
  • 1. A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.M. Palstra, A.P. Ramirez, A.R. Kortan, Nature 350, 600 (1991)
  • 2. L. Forro, L. Mihaly, Rep. Prog. Phys. 59, 473 (1996)
  • 3. S. Pekker, A. Janossy, L. Mihaly, O. Chauvet, M. Carrard, L. Forro, Science 265, 1077 (1994)
  • 4. K. Prassides, J. Tomkinson, C. Christides, M.J. Rosseinsky, D.W. Murphy, R.C. Haddon, Nature 354, 462 (1991)
  • 5. R. Tycko, G. Dabbagh, M.J. Rosseinsky, D.W. Murphy, A.P. Ramirez, R.M. Fleming, Phys. Rev. Lett. 68, 1912 (1992)
  • 6. C.T. Chen, L.H. Tjeng, P. Rudolf, G. Meigs, J.E. Rowe, J. Chen, J.P. McCauley, Jr. A.B. Smith, A.R. McGhie, W.J. Romanow, E.W. Plummer, Nature 352, 603 (1991)
  • 7. L.D. Rotter, Z. Schlesinger, J.P. McCauley, Jr., N. Coustel, J.E. Fischer, A.B. Smith, Nature 355, 532 (1992)
  • 8. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, Clarendon, Oxford 1979
  • 9. T. Inabe, H. Ogata, Y. Maruyama, Y. Achiba, S. Suzuki, K. Kikuchi, I. Ikemoto, Chem. Lett. 10, 1849 (1991)
  • 10. Z.H. Wang, A.W.P. Fung, G. Dresselhaus, M.S. Dresselhaus, K.A. Wang, P. Zhou, P.C. Eklund, Phys. Rev. B 47, 15354 (1993)
  • 11. K. Sugihara, T. Inabe, Y. Maruyama, Y. Achiba, J. Phys. Soc. Jpn. 62, 2757 (1993)
  • 12. D.T. Morelli, Phys. Rev. B 35, 4677 (1987)
  • 13. A.B. Kaiser, C. Uher, in: Physical Properties of High Temperature Superconductors, Ed. D.M. Ginsberg, Vol. 3, World Sci., Singapore 1992, p. 159
  • 14. E. Grivei, M. Cassart, J.P. Issi, L. Langer, B. Nysten, J.P. Michenaud, C. Fabre, A. Rassat, Phys. Rev. B 48, 8514 (1993)
  • 15. D. Varshney, Supercond. Sci. Technol. 18, 433 (2006)
  • 16. J. Callaway, Quantum Theory of the Solid State, Academic Press, London 1991
  • 17. R.D. Barnard, Thermoelectricity in Metals and Alloys, Taylor and Francis Ltd., London 1972
  • 18. D. Varshney, M.P. Tosi, J. Phys. Chem. Solids 61, 683 (2000)
  • 19. D.L. Novikov, V.A. Gubanov, A.J. Freeman, Physica C 191, 399 (1992)
  • 20. M.L. Cohen, Mater. Sci. Eng. B 19, 111 (1993)
  • 21. S.C. Erwin, W.E. Pickett, Phys. Rev. B 46, 14257 (1992)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.