Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 123 | 4 | 668-672

Article title

Elastic Properties, Mechanical Stability, and State Densities of Aluminnides

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
First-principles calculations were performed to study on alloying stability, electronic structure, and mechanical properties of Al-based intermetallic compounds. The results show that the lattice parameters obtained after full relaxation of crystalline cells are consistent with experimental data. The calculation of cohesive energies indicated that the structure stability of these Al-based intermetallics will become higher with increasing Zr element in crystal. The calculations of formation energies showed that AlCu_2Zr has the strongest alloying ability, followed by AlZr_3 and finally the AlCu_3. Further analysis finds out that single-crystal elastic constants at zero-pressure satisfy the requirement of mechanical stability for cubic crystals. The calculations on the ratio of bulk modulus to shear modulus reveal that AlCu_2Zr can exhibit a good ductility, followed by AlCu_3, whereas AlZr_3 can have a poor ductility; however, for stiffness, these intermetallics show a converse order. The calculations on Poisson's ratio show that AlCu_3 is much more anisotropic than the other two intermetallics. In addition, calculations on densities of states indicates that the valence bonds of these intermetallics are attributed to the valence electrons of Cu 3d states for AlCu_3, Cu 3d and Zr 4d states for AlCu_2Zr, and Al 3s, Zr 5s and 4d states for AlZr_3, respectively; in particular, the electronic structure of the AlZr_3 shows the strongest hybridization, leading to the worst ductility.

Keywords

EN

Year

Volume

123

Issue

4

Pages

668-672

Physical description

Dates

published
2013-04
received
2012-07-22
(unknown)
2013-02-09

Contributors

author
  • Aviation General Hospital, Beijing, 100012, China
author
  • Aviation General Hospital, Beijing, 100012, China
author
  • Beijing Tongren Hospital, Beijing, 100730, China
author
  • Aviation General Hospital, Beijing, 100012, China

References

  • 1. G. Sauthoff, in: Intermetallic Compounds, Eds. J.H. Westbrook, R.L. Fleischer, Vol. 1, Wiley, New York 1994, p. 991
  • 2. R.W. Cahn, Intermetallics 6, 563 (1998)
  • 3. P.K. Rajagopalan, I.G. Sharma, T.S. Krishnan, J. Alloys Comp. 285, 212 (1999)
  • 4. P. Wonwook, Mater. Design 17, 85 (1996)
  • 5. W. Zhou, L.J. Liu, B.L. Li, Q.G. Song, P.J. Wu, Electron Mater. 38, 356 (2009)
  • 6. C. Emmanuel, J.M. Sanchez, Phys. Rev. B 65, 094105 (2002)
  • 7. G. Ghosh, M. Asta, Acta Mater. 53, 3225 (2005)
  • 8. G. Ghosh, Acta Mater. 55, 3347 (2007)
  • 9. W.J. Ma, Y.R. Wang, B.C. Wei, Y.F. Sun, Trans. Nonferrous Met. Soc. China 17, 929 (2007)
  • 10. S. Pauly, J. Das, N. Mattern, D.H. Kim, J. Eckert, Intermetallics 17, 453 (2009)
  • 11. H. Baltache, R. Khenata, M. Sahnoun, M. Driz, B. Abbar, B. Bouhafs, Physica B 344, 334 (2004)
  • 12. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)
  • 13. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)
  • 14. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)
  • 15. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)
  • 16. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)
  • 17. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)
  • 18. P.E. Blöchl, O. Jepsen, O.K. Andersen, Phys. Rev. B 49, 16223 (1994)
  • 19. M. Draissia, M.Y. Debili, N. Boukhris, M. Zadam, S. Lallouche, Copper 10, 65 (2007)
  • 20. W.J. Meng, J. Faber, Jr., P.R. Okamoto, L.E. Rehn, B.J. Kestel, R.L. Hitterman, J. Appl. Phys. 67, 1312 (1990)
  • 21. R. Meyer zu Reckendorf, P.C. Schmidt, A. Weiss, Z. Phys. Chem. N.F. 163, 103 (1989)
  • 22. F.J. Birch, Geophys. Res. 83, 1257 (1978)
  • 23. V.I. Zubov, N.P. Tretiakov, J.N. Teixeira Rabelo, Phys. Lett. A 194, 223 (1994)
  • 24. M. Mattesini, R. Ahuja, B. Johansson, Phys. Rev. B 68, 184108 (2003)
  • 25. W.Y. Yu, N. Wang, X.B. Xiao, B.Y. Tang, L.M. Peng, W.J. Ding, Solid State Sci. 11, 1400 (2009)
  • 26. B.Y. Tang, N. Wang, W.Y. Yu, X.Q. Zeng, W.J. Ding, Acta Mater. 56, 3353 (2008)
  • 27. H.M. Ledbetter, J. Appl. Phys. 44, 1451 (1973)
  • 28. A. Taga, L. Vitos, B. Johansson, G. Grimvall, Phys. Rev. B 71, 014201 (2005)
  • 29. S.F. Pugh, Philos. Mag. 45, 823 (1954)
  • 30. V. Tvergaard, J.W. Hutchinson, J. Am. Ceram. Soc. 71, 157 (1988)
  • 31. B.B. Karki, L. Stixrude, S.J. Clark, M.C. Warren, G.J. Ackland, J. Crain, Am. Miner. 82, 51 (1997)
  • 32. P. Chen, D.L. Li, J.X. Yi, W. Li, B.Y. Tang, L.M. Peng, et al., Solid State Sci. 11, 2156 (2009)
  • 33. J.H. Xu, W. Lin, A.J. Freeman, Phys. Rev. B 48, 4276 (1993)
  • 34. J.H. Xu, T. Oguchi, A.J. Freeman, Phys. Rev. B 36, 4186 (1987)
  • 35. T. Hong, T.J. Watson-Yang, A.J. Freeman, T. Oguchi, J.H. Xu, Phys. Rev. B 41, 12462 (1990)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv123n406kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.