Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 123 | 3 | 589-596

Article title

Network Analysis of Correlation Strength between the Most Developed Countries

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
A new algorithm of the analysis of correlation among economy time series is proposed. The algorithm is based on the power law classification scheme followed by the analysis of the network on the percolation threshold. The algorithm was applied to the analysis of correlations among gross domestic product per capita time series of 19 most developed countries in the periods (1982, 2011), (1992, 2011) and (2002, 2011). The representative countries with respect to strength of correlation, convergence of time series and stability of correlation are distinguished. The results are compared with ultrametric distance matrix analysed by network on the percolation threshold.

Keywords

EN

Contributors

  • Institute of Theoretical Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław, Poland
  • Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences C.K. Norwida 25, 50-375 Wrocław

References

  • [1] R.N. Mantegna, doi: 10.1007/s100510050929, Eur. Phys. J. B 11, 193 (1999)
  • [2] R.N. Mantegna, doi: 10.1016/S0010-4655(99)00302-1, Comput. Phys. Commun. 121-122, 153 (1999)
  • [3] R.N. Mantegna, E. Stanley, Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge University Press, Cambridge 1999
  • [4] G. Bonanno, G. Caldarelli, F. Lillo, S. Miccichè, N. Vandewalle, R.N. Mantegna, doi: 10.1140/epjb/e2004-00129-6, Eur. Phys. J. B 38, 363 (2004)
  • [5] G. Bonanno, F. Lillo, R.N. Mantegna, doi: 10.1016/S0378-4371(01)00279-5, Physica A 299, 16 (2001)
  • [6] G. Bonanno, N. Vandewalle, R.N. Mantegna, doi: 10.1103/PhysRevE.62.R7615, Phys. Rev. E 62, R7615 (2000)
  • [7] T. Di Matteo, T. Aste, R.N. Mantegna, doi: 10.1016/j.physa.2004.03.041, Physica A 339, 181 (2004)
  • [8] H. Markowitz, J. Financ. 7, 77 (1952)
  • [9] M. Ausloos, J. Miśkiewicz, doi: 10.1142/S0218127410025831, Int. J. Bifurcat. Chaos 20, 381 (2010)
  • [10] J. Miśkiewicz, doi: 10.1016/j.physa.2009.12.031, Physica A 389, 1677 (2010)
  • [11] J. Miśkiewicz, doi: 10.1016/j.physa.2008.08.007, Physica A 387, 6595 (2008)
  • [12] J. Miśkiewicz, Acta Phys. Pol. A 121, B89 (2012)
  • [13] J. Miśkiewicz, M. Ausloos, Braz. J. Phys. 39, 388 (2009)
  • [14] J. Miśkiewicz, M. Ausloos, doi: 10.1016/j.physa.2009.10.029, Physica A 389, 797 (2010)
  • [15] J. Miśkiewicz, M. Ausloos, doi: 10.1016/j.physa.2008.08.004, Physica A 387, 6584 (2008)
  • [16] J. Miśkiewicz, Statistical Tools for Finance and Insurance, Springer Verlag, Berlin 2011, Ch. Distance matrix method for network structure analysis, p. 251
  • [17] R.L. Graham, P. Hell, doi: 10.1109/MAHC.1985.10011, Annals of the History of Computing 7, 43 (1985)
  • [18] A.M. Frieze, doi: 10.1016/0166-218X(85)90058-7, Discrete Appl. Math. 10, 47 (1985)
  • [19] J.L. Rodgers, W.A. Nicewander, doi: 10.2307/2685263, Am. Statistic. 42, 59 (1988)
  • [20] M. Sobczyk, Statistic: practical and theoretical aspects, Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej, Lublin 2006, (in Polish)
  • [21] B. Podobnik, H. Stanley, doi: 10.1103/PhysRevLett.100.084102, Phys. Rev. Lett. 100, (2008)
  • [22] D.D. Wackerly, W. Mendenhall, R.L. Scheaffer, Mathematical Statistics with Applications, Cengage Learning, Belmond (CA) 2008
  • [23] A.K. Sharma, Text Book Of Correlations And Regression, Discovery Publishing House, Delhi 2005
  • [24] R.S. Tsay, Analysis of Financial Time Series, Wiley, New Jersey 2010
  • [25] B. Mirkin, Core Concepts in Data Analysis: Summarization, Correlation and Visualization, Springer, London 2011
  • [26] H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, Cambridge University Press, Cambridge 2003
  • [27] F.O. Redelico, A.N. Proto, P. Clippe, M. Ausloos, doi: 10.1088/1742-6596/221/1/012001, J. Phys., Conf. Series 221, 012001 (2010)
  • [28] F.O. Redelico, A.N. Proto, M. Ausloos, doi: 10.1016/j.physa.2009.05.033, Physica A 388, 3527 (2009)
  • [29] R. Moeckel, B. Murray, doi: 10.1016/S0167-2789(96)00154-6, Physica D 102, 187 (1997)
  • [30] E.F. Krause, Taxicab Geometry: An Adventure in Non-Euclidean Geometry, Courier Dover Publications, 1987
  • [31] E. Isaacson, H.B. Keller, Analysis of Numerical Methods, Courier Dover Publications, New York 1994
  • [32] C. Woodford, C. Phillips, Numerical Methods with Worked Examples: Matlab Edition, Springer, Netherlands 2011
  • [33] W. Homenda, Algorythms, computational complexity, calculabilitylimits, Centrum Studiów Zaawansowanych Politechniki Warszawskiej, Warszawa 2009, (in Polish)
  • [34] C.H. Papadimitriou, Computational Complexity, WNT, Warszawa 2002 (in Polish)
  • [35] L. Todorova, B. Vogt, doi: 10.1016/j.physa.2011.07.035, Physica A 390, 4433 (2011)
  • [36] W. Li, F. Wang, S. Havlin, H.E. Stanley, doi: 10.1103/PhysRevE.84.046112, Phys. Rev. E 84, 046112 (2011)
  • [37] J. Ludescher, C. Tsallis, A. Bunde, doi: 10.1209/0295-5075/95/68002, EPL 95, 68002 (2011)
  • [38] U. Skórnik-Pokarowska, A. Orłowski, doi: 10.1016/j.physa.2004.06.092, Physica A 344, 81 (2004)
  • [39] M.J. Naylor, L.C. Rose, B.J. Moyle, doi: 10.1016/j.physa.2007.02.019, Physica A 382, 199 (2007)
  • [40] T. Mizuno, H. Takayasu, M. Takayasu, doi: 10.1016/j.physa.2005.08.079, Physica A 364, 336 (2006)
  • [41] J. Brida, W. Risso, doi: 10.1007/s10614-009-9187-1, Computat. Econom. 35, 85 (2010)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv123n317kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.