Preferences help
enabled [disable] Abstract
Number of results
2013 | 123 | 3 | 542-546
Article title

Characteristics of Complexity in Selected Economic Models in the Light of Nonlinear Dynamics

Title variants
Languages of publication
The catastrophe theory and deterministic chaos constitute the basic elements of economic complexity. Elementary catastrophes were the first remarkable form of nonlinear, topological complexity that were thoroughly studied in economics. Another type of catastrophe is the complexity catastrophe, namely an increase in the complexity of a system beyond a certain threshold which marks the beginning of a decrease in a system's adaptive capacity. As far as the ability to survive is concerned, complex adaptive systems should function within the range of optimal complexity which is neither too low or too high. Deterministic chaos and other types of complexity follow from the catastrophe theory. In general, chaos is seemingly random behavior of a deterministic system which stems from its high sensitivity to the initial condition. The theory of nonlinear dynamical systems, which unites various manifestations of complexity into one integrated system, runs contrary to the assumption that markets and economies spontaneously strive for a state of equilibrium. The opposite applies: their complexity seems to grow due to the influence of classical economic laws.
Physical description
  • [1] R.H. Day, Complex Economic Dynamics, Vol. 1, An Introduction to Dynamical Systems and Market Mechanisms, The MIT Press, Cambridge 1994
  • [2] W.A. Brock, P.J.F. de Lima, in: Handbook of Statistics, Vol. 14, Statistical Methods in Finance, Eds. G. Maddala, C. Rao, North-Holland, New York 1996, p. 317
  • [3] W.D. Dechert, C.H. Hommes, doi: 10.1016/S0165-1889(99)00020-2, J. Economic Dynam. Control 24, 651 (2000)
  • [4] J. Kwapień, S. Drożdż, doi: 10.1016/j.physrep.2012.01.007, Phys. Rep. 515, 115 (2012)
  • [5] C. Mesjasz, Acta Phys. Pol. A 117, 706 (2010)
  • [6] J.B. Rosser, M.V. Rosser, doi: 10.1155/S1026022697000277, Discrete Dynam. Nature Soc. 1, 269 (1998)
  • [7] J.B. Rosser, M.V. Rosser, S.J. Guastello, R.W. Bond, doi: 10.1023/A:1009519030554, Nonlin. Dynam. Psychol. Life Sci. 5, 345 (2001)
  • [8] T. Puu, doi: 10.1007/BF02071055, Ann. Operat. Res. 37, 169 (1992)
  • [9] T. Puu, Attractors, Bifurcations, and Chaos. Nonlinear Phenomena in Economics, Springer-Verlag, Berlin 2000
  • [10] E.C. Zeeman, Catastrophe Theory: Selected Papers, 1972-1977, Addison-Wesley, London 1977
  • [11] A. Jakimowicz, Nonlinear Dynam. Psychol. Life Sci. 13, 393 (2009)
  • [12] A. Jakimowicz, Foundations of State Interventionism. Philosophy of Economics History, Series Modern Economy, Wydawnictwo Naukowe PWN, Warszawa 2012 (in Polish)
  • [13] A. Jakimowicz, Acta Phys. Pol. A 117, 640 (2010)
  • [14] A. Noga, Teorie przedsiębiorstw, PWE, Warszawa 2009 (in Polish)
  • [15] J.C. Bogle, Enough: True Measures of Money, Business, and Life, Wiley, Hoboken 2009
  • [16] S.A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press, New York 1993
  • [17] A. Simonovits, doi: 10.1007/BF00361113, Econom. Plan. 24, 27 (1991)
  • [18] A. Simonovits, doi: 10.1016/0147-5967(91)90026-P, J. Comparat. Econom. 15, 460 (1991)
  • [19] C.H. Hommes, H.E. Nusse, A. Simonovits, doi: 10.1016/0165-1889(93)00778-3, J. Econom. Dynam. Control 19, 155 (1995)
  • [20] M. Lackó, Acta Oeconomica 24, 357 (1980)
  • [21] M. Lackó, in: Models of Disequilibrium and Shortage in Centrally Planned Economies, Eds. C. Davis, W. Charemza, Chapman and Hall, London 1989, p. 263
  • [22] J.R. Hicks, A Contribution to the Theory of the Trade Cycle, Clarendon Press, Oxford 1951
  • [23] H.E. Nusse, J.A. Yorke, Dynamics: Numerical Explorations, Springer-Verlag, New York 1998
  • [24] A. Jakimowicz, Sources of Instability of Market Structures, Series Modern Economy, Wydawnictwo Naukowe PWN, Warszawa 2010 (in Polish)
  • [25] A. Cournot, Mathematical Principles of the Theory of Wealth, James & Gordon, San Diego 1995
  • [26] T. Puu, doi: 10.1016/0960-0779(91)90045-B, Chaos, Solitons Fractals 1, 573 (1991)
  • [27] T. Puu, Nonlinear Economic Dynamics, Springer-Verlag, Berlin 1997
  • [28] J. Nash, Ann. Math. 54, 286 (1951)
  • [29] A. Jakimowicz, Acta Phys. Pol. A 121, B-50 (2012)
  • [30] A. Matsumoto, doi: 10.1007/s10957-006-9021-z, J. Optimiz. Theory Appl. 128, 379 (2006)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.