Preferences help
enabled [disable] Abstract
Number of results
2013 | 123 | 2 | 439-444
Article title

The Use of Sensor Binning Option in Double-Shutter CCD Based Digital Particle Image Velocimetry

Title variants
Languages of publication
In this work we present an experimental investigation of the benefits of double-shutter CCD's pixel binning option in double-frame particle image velocimetry experiments. The CCD binning process increases the sensitivity, signal-to-noise ratio and frame rate of the imaging sensor at the cost of spatial resolution. In order to explore the benefits of the CCD pixel binning option, in low level illuminated particle image velocimetry measurements, we have carried out of series of flow velocity measurements experiments in 30 μm × 300 μm × 50000 μm microchannel using micro particle image velocimetry setup. The system is equipped with dual cavity laser system conjugated with an optical attenuator for volume illumination, a double-shutter CCD camera (1392×1040 quadratic pixels with 6.45 μm size), a high magnification optical epifluorescent microscope and a syringe pump. The flow images were recorded at normal, 2×1, 1×2 and 2×2 pixel binning modes of a monochrome CCD camera. A comparison of velocity vector patterns obtained in low level illumination experiments for four different pixel binning modes shows that pixel binning option significantly increases the signal-to-noise ratio in particle image velocimetry recordings. A good agreement of experimental velocity profiles obtained using cross-correlation analysis and sub-pixel interpolation scheme based on a Gaussian regression with theoretical calculated profiles shows the consistency of the experimental results.

Physical description
  • Scientific and Technical Research Council of Turkey-National Metrology Institute, TÜBİTAK-UME, Kocael .i, Turkey
  • Department of Mechanical Enginnering, Yildiz Technical University, Istanbul, Turkey
  • [1] R.J. Adrian, Experim. Fluids 39, 159 (2005)
  • [2] C.E. Willert, M. Gharib, Experim. Fluids 10, 181 (1991)
  • [3] R.D. Keane, R.J. Adrian, Y. Zhang, Meas. Sci. Technol. 6, 754 (1995)
  • [4] R.J. Adrian, Annu. Rev. Fluid Mech. 23, 261 (1991)
  • [5] B. Akselli, A. Kholmatov, H. Nasibov, in: Int. Symp. on Optomechatronic Technologies, IEEEXplore, 2009, p. 223
  • [6] H. Nasibov, A. Kholmatov, B. Akselli, A. Nasibov, S. Baytaroglu, IEEE/ASME Trans. Mechatron. 15, 527 (2010)
  • [7] C.D. Meinhart, S.T. Wereley, Meas. Sci. Technol. 14, 1047 (2003)
  • [8] J.G. Santiago, S.T. Wereley, C.D. Meinhart, D.J. Beebe, R.J. Adrian, Experim. Fluids 25, 316 (1998)
  • [9] S. Devasenathipathy, J.G. Santiago, S.T. Wereley, C.D. Meinhart, K. Takehara, Experim. Fluids 34, 504 (2003)
  • [10] R.J. Adrian, Meas. Sci. Technol. 8, 1393 (1997)
  • [11] A. Kholmatov, B. Akselli, A. Nasibov, H. Nasibov, Proc. SPIE 7723, 77231R-1, (2010)
  • [12] B. Akselli, I. Teke, Int. J. Metrol. Qual. Eng. 2, 83 (2011)
  • [13] E. Balaban, A. Nasibov, A. Kholmatov, H. Nasibov, F. Hacizade, Proc. SPIE 8430, 84301I-1 (2012)
  • [14] Y.H. Li, C.Y. Wu, B.C. Chen, Y.C. Chao, Meas. Sci. Technol. 19, 045401 (2008)
  • [15] M.R. Cholemari, Exp. Fluids 42, 913 (2007)
  • [16] H. Nobach, N. Damaschke, C. Tropea, Experim. Fluids 39, 299 (2005)
  • [17] H. Nobach, M. Honkanen, Experim. Fluids 38, 511 (2005)
  • [18] M. Raffel, C.E. Willert, S.T. Wereley, J. Kompenhans, Particle Image Velocimetry - A Practical Guide, Springer, 2nd ed., 2007
  • [19] F.M. White, Viscous Fluid Flow, 3rd ed., McGraw Hill, Singapore 2006
  • [20] C.D. Meinhart, S.T. Wereley, M.H.B. Gray, Meas. Sci. Technol. 11, 809 (2000)
  • [21] M.G. Olsen, C.J. Bourdon, J. Fluids Eng. (Trans. ASME) 125, 895 (2003)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.