PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 123 | 2 | 407-410
Article title

Sub-Nanosecond Phase Recovery in Quantum-Dot Semiconductor Optical Amplifiers

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, optimal design of a pumping scheme for achieving the best gain and phase response in quntum-dot semiconductor optical amplifiers is investigated. For the first time, the dynamic response of the quntum-dot semiconductor optical amplifier is evaluated under three different pumping schemes, known as optical pumping, electrical pumping, and electro-optical pumping. Simulation results show that the shortest gain recovery time in quntum-dot semiconductor optical amplifiers can be achieved under the electrical pumping scheme. However, under the optical pumping and electro-optical pumping schemes, the quntum-dot semiconductor optical amplifier represents a shorter phase recovery compared to the electrical pumping scheme. We found that a sub-nanosecond phase recovery in the quntum-dot semiconductor optical amplifier can be achieved under the OP and electro-optical pumping schemes, which can never be achieved under the electrical pumping, because of the slow carrier dynamics of the carrier reservoir. Also, it was found that the gain recovery process in an optically pumped quntum-dot semiconductor optical amplifier can be significantly accelerated at cryogenic temperatures. This result demonstrates the superiorities of the optical pumping scheme over the electrical pumping and electro-optical pumping schemes at low temperatures, where both the gain and phase recovery times of an optically pumped quantum-dot semiconductor optical amplifier are drastically decreased.
Keywords
EN
Year
Volume
123
Issue
2
Pages
407-410
Physical description
Dates
published
2013-02
References
  • [1] Z. Bakonyi, H. Su, G. Onishchukov, L.F. Lester, A.L. Gray, T.C. Newell, A. Tuennermann, IEEE J. Quantum Electron. 39, 1409 (2003)
  • [2] H. Taleb, K. Abedi, S. Golmohammadi, Appl. Opt. 50, 608 (2011)
  • [3] T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, J. Leuthold, Opt. Exp. 16, 170 (2008)
  • [4] J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, G. Eisenstein, IEEE J. Quantum Electron. 45, 240 (2009)
  • [5] J.L. Xiao, Y.Z. Huang, IEEE J. Quantum Electron. 44, 448 (2008)
  • [6] T.W. Berg, S. Bischoff, I. Magnusdottir, J. Moerk, IEEE Photon. Technol. Lett. 13, 541 (2001)
  • [7] A.V. Uskov, E.P. O'Reilly, M. Laemmlin, N.N. Ledentsov, D. Bimberg, Opt. Commun. 248, 211 (2005)
  • [8] G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, in: Proc. 35th European Conference on Optical Communication, ECOC 2009, Vienna, Vienna 2009, p. PDP 1,4
  • [9] A. Rostami, H.B.A. Nejad, R.M. Qartavol, H.R. Saghai, IEEE J. Quantum Electron. 46, 354 (2010)
  • [10] H. Baghban, R. Maram, R. Oliaee, R. Yadipour, A. Rostami, J. Opt. 13, 035406 (2011)
  • [11] S.B. Kuntze, L. Pavel, J.S. Aitchison, IEEE J. Quantum Electron. 43, 123 (2007)
  • [12] K. Abedi, H. Taleb, J. Lightwave Technol. 30, 1924 (2012)
  • [13] J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, G. Eisenstein, IEEE J. Quantum Electron. 44, 658 (2008)
  • [14] J. Kim, C. Meuer, D. Bimberg, G. Eisenstein, Appl. Phys. Lett. 94, 041112 (2009)
  • [15] G. Ozgur, A. Demir, D.G. Deppe, IEEE J. Quantum Electron. 45, 1265 (2009)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv123n2084kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.