Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
We propose a 3D branched ZnO nanostructure for the fabrication of highly efficient dye-sensitized solar cell photoanodes. A coral-shaped structured Zn layer was deposited by radio frequency magnetron sputtering at room temperature onto fluorine-doped tin oxide/glass sheets and then thermally oxidized in ambient atmosphere, obtaining a high-density branched ZnO film. The porous structure provides a large surface area, and, as a consequence, a high number of adsorption sites, and the size and spacing of the nanostructures (on the order of the exciton diffusion length) are optimal for good electron collection efficiency. The proposed synthesis technique is simple and scalable and the reproducibility of the growth results was tested. The crystalline phase of the film was investigated, evidencing the complete oxidation and the formation of a pure wurtzite crystalline structure. ZnO-based solar harvesters were fabricated in a microfluidic architecture, using conventional sensitizer and electrolyte. The dependence of the cell efficiency on dye incubation time and film thickness was studied with I-V electrical characterization and electrochemical impedance spectroscopy. The obtained conversion efficiency values, with a maximum value of 4.83%, confirm the highly promising properties of this material for the implementation in dye-sensitized solar cell photoanodes.
Discipline
- 88.40.H-: Solar cells (photovoltaics)
- 68.55.A-: Nucleation and growth
- 73.40.Mr: Semiconductor-electrolyte contacts
- 81.05.Rm: Porous materials; granular materials(for granular superconductors, see 74.81.Bd)
- 68.55.J-: Morphology of films
- 72.20.Jv: Charge carriers: generation, recombination, lifetime, and trapping
- 81.15.Cd: Deposition by sputtering
- 72.40.+w: Photoconduction and photovoltaic effects
Journal
Year
Volume
Issue
Pages
386-389
Physical description
Dates
published
2013-02
Contributors
author
- Center for Space Human Robotics @ PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, Torino, 10129, Italy
author
- Center for Space Human Robotics @ PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, Torino, 10129, Italy
- Dipartimento Scienza Applicata e Tecnologia, Politecnico di Torino Corso Duca degli Abruzzi 24, Torino, 10129, Italy
author
- Dipartimento Scienza Applicata e Tecnologia, Politecnico di Torino Corso Duca degli Abruzzi 24, Torino, 10129, Italy
author
- Center for Space Human Robotics @ PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, Torino, 10129, Italy
author
- Center for Space Human Robotics @ PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, Torino, 10129, Italy
author
- Center for Space Human Robotics @ PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, Torino, 10129, Italy
- Dipartimento Scienza Applicata e Tecnologia, Politecnico di Torino Corso Duca degli Abruzzi 24, Torino, 10129, Italy
author
- Center for Space Human Robotics @ PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, Torino, 10129, Italy
author
- Center for Space Human Robotics @ PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, Torino, 10129, Italy
- Dipartimento Scienza Applicata e Tecnologia, Politecnico di Torino Corso Duca degli Abruzzi 24, Torino, 10129, Italy
author
- Center for Space Human Robotics @ PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, Torino, 10129, Italy
- Dipartimento Scienza Applicata e Tecnologia, Politecnico di Torino Corso Duca degli Abruzzi 24, Torino, 10129, Italy
References
- [1] Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21, 4087 (2009)
- [2] K. Keis, E. Magnusson, H. Lindstrom, S.E. Lindquist, A. Hagfeldt, Sol. Energy Mater. Sol. Cells 73, 51 (2002)
- [3] D. Calestani, M.Z. Zha, L. Zanotti, M. Villani, A. Zappettini, Cryst. Eng. Comm. 13, 1707 (2011)
- [4] Q.C. Li, V. Kumar, Y. Li, H.T. Zhang, T.J. Marks, R.P.H. Chang, Chem. Mater. 17, 1001 (2005)
- [5] J.H. Xiang, P.X. Zhu, Y. Masuda, M. Okuya, S. Kaneko, K. Koumoto, J. Nanosci. Nanotechnol. 6, 1797 (2006)
- [6] A. Tiwari, M. Snure, J. Nanosci. Nanotechnol. 8, 3981 (2008)
- [7] D. Calestani, M. Zha, R. Mosca, A. Zappettini, M.C. Carotta, V. Di Natale, L. Zanotti, Sens. Actuat. B 144, 472 (2010)
- [8] R. Gazia, A. Chiodoni, S. Bianco, A. Lamberti, M. Quaglio, A. Sacco, E. Tresso, P. Mandracci, C.F. Pirri, Thin Solid Films 524, 107 (2012)
- [9] A. Lamberti, A. Sacco, S. Bianco, E. Giuri, M. Quaglio, A. Chiodoni, E. Tresso, Microelectron. Eng. 88, 2308 (2011)
- [10] A. Lamberti, R. Gazia, A. Sacco, S. Bianco, M. Quaglio, A. Chiodoni, E. Tresso, C.F. Pirri, 'Coral-shaped ZnO nanostructures for dye-sensitized Solar Cell photoanodes', Progr. Photovolt. Res. Appl., in press, 2012
- [11] M.A. Baker, W. Gissler, S. Klose, M. Trampert, F. Weber, Surf. Coat. Technol. 125, 207 (2000)
- [12] A.F. Jankowski, J.P. Hayes, J. Vac. Sci. Technol. A 21, 422 (2003)
- [13] I. Gonzalez-Valls, M. Lira-Cantu, Energy Environ. Sci. 2, 19 (2009)
- [14] A. Sacco, A. Lamberti, M. Quaglio, S. Bianco, E. Tresso, A.-L. Alexe-Ionescu, C.F. Pirri, Int. J. Photoenergy 2012, 216780 (2012)
- [15] T.P. Chou, Q. Zhang, G. Cao, J. Phys. Chem. C 111, 18804 (2007)
- [16] N. Memarian, I. Concina, A. Braga, S.M. Rozati, A. Vomiero, G. Sberveglieri, Angew. Chem. Int. Ed. 123, 12321 (2011)
- [17] K. Keis, J. Lindgren, S.E. Lindquist, A. Hagfeldt, Langmuir 16, 4688 (2000)
- [18] Y. Liu, X. Sun, Q. Tai, H. Hu, B. Chen, N. Huang, B. Sebo, X.-Z. Zhao, J. Power Sources 196, 475 (2011)
- [19] P.J. Cameron, L.M. Peter, J. Phys. Chem. B 109, 7392 (2005)
- [20] S.M. Waita, B.O. Aduda, J.M. Mwabora, C.G. Granqvist, S.-E. Lindquist, G.A. Niklasson, A. Hagfeldt, G. Boschloo, J. Electroanal. Chem. 605, 151 (2007)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv123n2077kz