Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 123 | 2 | 250-253

Article title

Discharge Currents Discrimination Technique Based on Multi-Linear Regression Line and Artificial Neural Networks for Power Transformers Diagnosis

Content

Title variants

Languages of publication

EN

Abstracts

EN
The proposed work will be consecrated to the study of positive pre-breakdown currents triggered in mineral transformer oil under 50 Hz alternating overvoltage. Since negative currents are recorded in low rates and for higher voltage levels than positive ones, only the latter will be prior taken into consideration. Both streamer propagation and arc discharge current types are identified and are used in the training process of an artificial neural network and the multi-linear regression line of these currents in order to develop a complementary diagnosis tool that can serve as an on-line transformer protection. More successful results than those obtained by other developed techniques are expected.

Keywords

EN

Contributors

author
  • Laboratory of Electrical and Industrial Systems, FEI, USTHB, BP 32 Bab Ezzouar, Algiers, 16311, Algeria
author
  • Laboratory of Electrical and Industrial Systems, FEI, USTHB, BP 32 Bab Ezzouar, Algiers, 16311, Algeria
author
  • Laboratory of Electrical and Industrial Systems, FEI, USTHB, BP 32 Bab Ezzouar, Algiers, 16311, Algeria
author
  • Laboratory of Electrical and Industrial Systems, FEI, USTHB, BP 32 Bab Ezzouar, Algiers, 16311, Algeria
author
  • Ecole Centrale de Lyon, Ampere CNRS UMR 5005, 36 av. Guy de Collongue, 69134 Ecully, France

References

  • [1] A. Beroual, M. Zahn, A. Badent, K. Kist, A.J. Schwabe, H. Yamashita, K. Yamazawa, M. Danikas, W.D. Chadband, Y. Torshin, IEEE Electr. Insul. Mag. 14, 6 (1998)
  • [2] A. Beroual, H. Moulai, Arch. Electr. Eng. (AEE) L, 115 (2001)
  • [3] V.G. Arakelian, IEEE Electr. Insul. Mag. 18, 26 (2002)
  • [4] M. Wang, IEEE Trans. Power Deliv. 18, 163 (2003)
  • [5] A. Sarikhani, E. Reihani, N. Nabizadeh, A. Hooshmand, M. Davodi, Europ. Trans. Electr. Power 19, 1140 (2008)
  • [6] IEEE Std. C57.104, Guide for interpretation of gases generated in oil-immersed transformer, 2008
  • [7] M. Duval, J. Dukarm, IEEE Electr. Insul. Mag. 21, 21 (2005)
  • [8] M. Duval, Recent Developments in DGA Interpretation, CIGRE Joint Task Force, Brochure D1.01/A2.11 (2006)
  • [9] H. Moulai, A. Nacer, A. Beroual, IEEE Trans. Diel. Electr. Insul. 19, 498 (2012)
  • [10] A. Beroual, R. Tobazeon, IEEE Trans. Electr. Insul. EI-21, 613 (1986)
  • [11] Y. Nakao, H. Itoh, S. Hoshino, Y. Sakai, H. Tagashira, IEEE Trans. Dielectr. Electr. Insul. 1, 383 (1994)
  • [12] Yu.V. Torshin, IEEE Trans. Dielectr. Electr. Insul. 2, 167 (1995)
  • [13] L. Lundgaard, D. Linhjel, G. Berg, S. Sigmond, in: 12th Int. Conf. on Conduction and Breakdown in Dielectric Liquids, ICDL'96, Roma (Italy), Rome 1996, p. 175
  • [14] C.T. Lin, C.S.G. Lee, in: Neural Fuzzy Systems, Prentice-Hall, Englewood Cliffs 1996, p. 205

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv123n2030kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.