Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 123 | 1 | 126-131

Article title

First Principles Study of Stability and Electronic Structure οf TMH and TMH_2 (TM = Y, Zr, Nb)

Content

Title variants

Languages of publication

EN

Abstracts

EN
First principles calculations are performed by using Vienna ab initio simulation package within the framework of density functional theory to understand the electronic and structural properties of yttrium, zirconium and niobium hydrides. The equilibrium lattice constant, the bulk modulus, the total density of states and charge density distribution are analyzed in comparison with the available experimental and theoretical data. The X-ray diffraction pattern is also simulated to estimate the lattice constants of these hydrides. The formation energies are computed for rock-salt and fluorite structures using density functional theory. The calculated elastic constants obey the necessary stability conditions. A detailed analysis of the changes in density of states and electron density upon hydride formation has allowed us to understand the formation of these hydrides.

Keywords

Contributors

  • Kamaraj College, Tuticorin, Tamil nadu-628003, India
  • N.M.S.S. Vellaichamy Nadar College, Madurai, Tamil nadu-625019, India
  • N.M.S.S. Vellaichamy Nadar College, Madurai, Tamil nadu-625019, India
  • N.M.S.S. Vellaichamy Nadar College, Madurai, Tamil nadu-625019, India
  • N.M.S.S. Vellaichamy Nadar College, Madurai, Tamil nadu-625019, India
author
  • SRM University, Chennai, Tamil Nadu-603203, India

References

  • [1] M.J. Latroche, Phys. Chem. Solids 65, 517 (2004)
  • [2] R. Viswall, G. Alefeld, Hydrogen Storage in Metals II, Springer, Berlin 1978, p. 201
  • [3] H. Vehoff, in: Hydrogen in Metals III, Properties and Applications, Ed. H. Wipf, Springer-Verlag, Berlin 1997, p. 215
  • [4] Z.A. Schlapbach, Nature (London) 414, 353 (2001)
  • [5] J. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)
  • [6] J. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)
  • [7] G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996)
  • [8] G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)
  • [9] P.E. Blochl, Phys. Rev. B 17, 17953 (1994)
  • [10] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)
  • [11] O.K. Anderson, Phys. Rev. B 12, 3060 (1975)
  • [12] J.N. Daou, P. Vajda, Phys. Rev. B 45, 10907 (1992)
  • [13] F. Ducastelle, R. Caudron, P. Costa, J. Phys. (France) 31, 57 (1970)
  • [14] H. Muller, K. Weymann, J. Less-Common Met. 119, 15 (1986)
  • [15] Vipul Strivatsa, M. Rajagopalan, J. Magn. Magn. Mater. 321, 607 (2009)
  • [16] W. Wolf, P. Herzig, J. Condens. Matter Phys. 12, 4535 (2000)
  • [17] M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Clarendon, Oxford 1956

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv123n128kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.