Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 123 | 1 | 62-66

Article title

Double Diffusion in Ar-N_2 Binary Gas System at the Constant Value of Temperature Gradient

Content

Title variants

Languages of publication

EN

Abstracts

EN
An experimental study of the "diffusion-gravitational convection" transition boundary in an Ar-N_2 binary system at different pressures and a constant temperature gradient is performed. It is shown that the diffusion is replaced by the gravitational convection at a pressure p ≈ 0.5 MPa. In terms of the stability theory, a perturbation boundary line is determined, dividing the Rayleigh numbers plane into the regions of the diffusion and the convective mass transfer. The experimental data agree well with the theoretical values.

Keywords

EN

Contributors

author
  • B. El'tsin Ural State Technical University, Mira, 19, Yekaterinburg 620002, Russia
author
  • Abay Kazakh National Pedagogical University, Dostyk, 13, Almaty 050100, Kazakhstan
author
  • Department of Physics, Al-Farabi Kazakh National University, Al-Farabi, 71, Almaty 050038, Kazakhstan
author
  • Department of Physics, Al-Farabi Kazakh National University, Al-Farabi, 71, Almaty 050038, Kazakhstan
author
  • Department of Physics, Al-Farabi Kazakh National University, Al-Farabi, 71, Almaty 050038, Kazakhstan

References

  • [1] H. Stommel, A.B. Arons, D. Blanchard, Deep-Sea Res. 3, 152 (1956)
  • [2] M.C. Gregg, C.S. Cox, Deep-Sea Res. 19, 355 (1972)
  • [3] M.E. Stern, Tell Us. 12, 172 (1960)
  • [4] J.S. Turner, H.A Stommel, Proc. Natl. Acad. Sci. 52, 49 (1964)
  • [5] J.S. Turner, Ann. Rev. Fluid Mech. 6, 37 (1974)
  • [6] H.E. Hurbert, J.S. Turner, J. Fluid Mech. 106, 413 (1981)
  • [7] T.J. Mcdougall, J. Fluid Mech. 126 (1982)
  • [8] H.E. Hurbert, J.S. Turner, J. Fluid Mech. 100, 367 (1980)
  • [9] S. Martin, P. Kauffman, J. Fluid Mech. 64, 507 (1974)
  • [10] L. Miller, E.A. Mason, Phys. Fluids 9, 711 (1966)
  • [11] L. Miller, T.Í. Spurling, E.A. Phys. Fluids 10, 1809 (1967)
  • [12] Yu.I. Zhavrin, V.N. Kosov, J. Eng. Phys. Thermophys. 55, 774 (1988)
  • [13] Yu.I. Zhavrin, V.N. Kosov, J. Eng. Phys. Thermophys. 60, 331 (1991)
  • [14] Yu.I. Zhavrin, V.N. Kosov, D.U. Kul'zhanov, K.K. Karataeva, J. Eng. Phys. Thermophys. 75, 868 (2002)
  • [15] Yu.I. Zhavrin, V.N. Kosov, S.A. Krasikov, J. Eng. Phys. Thermophys. 69, 747 (1996)
  • [16] R.D. Trengove, H.L. Robjohns, M.L. Martin, P.J. Dunlop, Physica A 108, 502 (1981)
  • [17] R.D. Trengove, H.L. Robjohns, T.N. Bell, M.L. Martin, P.J. Dunlop, Physica A 108, 488 (1981)
  • [18] Yu.I. Zhavrin, N.D. Kosov, S.M. Belov, S.B. Tarasov, J. Tech. Phys. 54, 934 (1984)
  • [19] J.O. Hirschfelder, Ch.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids, University of Wisconsin, Wisconsin 1954
  • [20] V.N. Kosov, V.D. Seleznev, Yu.I. Zhavrin, J. Tech. Phys. 42, 1236 (1997)
  • [21] L.D. Landau, E.M. Lifshitz, Teoreticheskaya Fizika. Gidrodinamika, Nauka, Moscow 1983

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv123n114kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.