PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 123 | 1 | 62-66
Article title

Double Diffusion in Ar-N_2 Binary Gas System at the Constant Value of Temperature Gradient

Content
Title variants
Languages of publication
EN
Abstracts
EN
An experimental study of the "diffusion-gravitational convection" transition boundary in an Ar-N_2 binary system at different pressures and a constant temperature gradient is performed. It is shown that the diffusion is replaced by the gravitational convection at a pressure p ≈ 0.5 MPa. In terms of the stability theory, a perturbation boundary line is determined, dividing the Rayleigh numbers plane into the regions of the diffusion and the convective mass transfer. The experimental data agree well with the theoretical values.
Keywords
EN
Publisher

Year
Volume
123
Issue
1
Pages
62-66
Physical description
Dates
published
2013-01
received
2011-06-20
(unknown)
2012-11-11
Contributors
author
  • B. El'tsin Ural State Technical University, Mira, 19, Yekaterinburg 620002, Russia
author
  • Abay Kazakh National Pedagogical University, Dostyk, 13, Almaty 050100, Kazakhstan
author
  • Department of Physics, Al-Farabi Kazakh National University, Al-Farabi, 71, Almaty 050038, Kazakhstan
author
  • Department of Physics, Al-Farabi Kazakh National University, Al-Farabi, 71, Almaty 050038, Kazakhstan
author
  • Department of Physics, Al-Farabi Kazakh National University, Al-Farabi, 71, Almaty 050038, Kazakhstan
References
  • [1] H. Stommel, A.B. Arons, D. Blanchard, Deep-Sea Res. 3, 152 (1956)
  • [2] M.C. Gregg, C.S. Cox, Deep-Sea Res. 19, 355 (1972)
  • [3] M.E. Stern, Tell Us. 12, 172 (1960)
  • [4] J.S. Turner, H.A Stommel, Proc. Natl. Acad. Sci. 52, 49 (1964)
  • [5] J.S. Turner, Ann. Rev. Fluid Mech. 6, 37 (1974)
  • [6] H.E. Hurbert, J.S. Turner, J. Fluid Mech. 106, 413 (1981)
  • [7] T.J. Mcdougall, J. Fluid Mech. 126 (1982)
  • [8] H.E. Hurbert, J.S. Turner, J. Fluid Mech. 100, 367 (1980)
  • [9] S. Martin, P. Kauffman, J. Fluid Mech. 64, 507 (1974)
  • [10] L. Miller, E.A. Mason, Phys. Fluids 9, 711 (1966)
  • [11] L. Miller, T.Í. Spurling, E.A. Phys. Fluids 10, 1809 (1967)
  • [12] Yu.I. Zhavrin, V.N. Kosov, J. Eng. Phys. Thermophys. 55, 774 (1988)
  • [13] Yu.I. Zhavrin, V.N. Kosov, J. Eng. Phys. Thermophys. 60, 331 (1991)
  • [14] Yu.I. Zhavrin, V.N. Kosov, D.U. Kul'zhanov, K.K. Karataeva, J. Eng. Phys. Thermophys. 75, 868 (2002)
  • [15] Yu.I. Zhavrin, V.N. Kosov, S.A. Krasikov, J. Eng. Phys. Thermophys. 69, 747 (1996)
  • [16] R.D. Trengove, H.L. Robjohns, M.L. Martin, P.J. Dunlop, Physica A 108, 502 (1981)
  • [17] R.D. Trengove, H.L. Robjohns, T.N. Bell, M.L. Martin, P.J. Dunlop, Physica A 108, 488 (1981)
  • [18] Yu.I. Zhavrin, N.D. Kosov, S.M. Belov, S.B. Tarasov, J. Tech. Phys. 54, 934 (1984)
  • [19] J.O. Hirschfelder, Ch.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids, University of Wisconsin, Wisconsin 1954
  • [20] V.N. Kosov, V.D. Seleznev, Yu.I. Zhavrin, J. Tech. Phys. 42, 1236 (1997)
  • [21] L.D. Landau, E.M. Lifshitz, Teoreticheskaya Fizika. Gidrodinamika, Nauka, Moscow 1983
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv123n114kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.