Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 122 | 3 | 512-515

Article title

Controlling Mechanisms of Creep Deformation of New Air-Hardenable TiAl-Based Alloy

Content

Title variants

Languages of publication

EN

Abstracts

EN
In the present work, controlling mechanisms of creep deformation of a new cast air-hardenable Ti-46Al-8Ta [at.%] alloy was studied. Long-term constant load tensile creep tests combined with an abrupt change of the applied stress were performed at 700°C. The response of the alloy to a stress reduction is analyzed. Transient behaviour with zero creep before recommencing creep at a reduced load is related to possible creep deformation mechanisms. The dislocation microstructures are analysed for creep strains corresponding to the minimum creep rate by transmission electron microscopy. The controlling mechanisms of creep deformation are identified from the transient creep behaviour of the alloy during stress reduction, the stress exponent and dislocation microstructures observed after creep testing.

Keywords

Contributors

author
  • Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Račianska 75, 831 02 Bratislava, Slovak Republic
author
  • Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Račianska 75, 831 02 Bratislava, Slovak Republic
author
  • Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Račianska 75, 831 02 Bratislava, Slovak Republic

References

  • [1] J. Lapin, Z. Gabalcová, O. Bajana, Kovove Mater. 47, 159 (2009)
  • [2] W.J. Zhang, S.C. Deevi, Mater. Sci. Eng. A 362, 280 (2003)
  • [3] D. Hu, A.J. Huang, X. Wu, Intermetallics 15, 327 (2007)
  • [4] H. Saage, A.J. Huang, D. Hu, M.H. Loretto, X. Wu, Intermetallics 17, 32 (2009)
  • [5] J. Lapin, K. Frkáňová, Kovove Mater. 49, 243 (2011)
  • [6] J. Aguilar, A. Schievenbusch, O. Kättlitz, Intermetallics 19, 757 (2011)
  • [7] Q. Luan, Q. Duan, X. Wang, J. Liu, L. Peng, Mater. Sci. Eng. A 527, 4484 (2010)
  • [8] F. Appel, R. Wagner, Mater. Sci. Eng. R 22, 187 (1998)
  • [9] W.J. Zhang, S.C. Deevi, Intermetallics 10, 603 (2002)
  • [10] J. Lapin, Kovove Mater. 43, 81 (2005)
  • [11] J. Lapin, T. Pelachová, M. Dománková, Intermetallics 19, 819 (2011)
  • [12] J. Lapin, H. Staneková, Acta Phys. Pol. A 122, 453 (2012)
  • [13] H. Jiang, K. Zhang, X.J. Hao, H. Saage, N. Wain, D. Hu, M.H. Loretto, X. Wu, Intermetallics 18, 938 (2010)
  • [14] J. Aguilar, U. Hecht, A. Schievenbusch, Mater. Sci. Forum 638-642, 1275 (2010)
  • [15] J. Lapin, T. Pelachová, H. Staneková, M. Dománková, Kovove Mater. 48, 337 (2010)
  • [16] J. Lapin, Intermetallics 14, 115 (2006)
  • [17] V. Recina, D. Lundström, B. Karlsson, Metall. Mater. Trans. A 33A, 2869 (2002)
  • [18] J. Lapin, Scr. Mater. 50, 261 (2004)
  • [19] T.A. Parthasarathy, M.G. Mendiratta, D.M. Dimiduk, Scr. Mater. 37, 315 (1997)
  • [20] J. Čadek, Creep in Metallic Materials, Elsevier, New York 1988, p. 181
  • [21] F. Appel, Intermetallics 9, 907 (2001)
  • [22] A. Dlouhý, K. Kuchařová, J. Březina, Mater. Sci. Eng. A 319-321, 820 (2001)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv122z3p22kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.