EN
Considering high pressure torsion experiments as a motivation, plastic behavior of crystalline solids is treated as a highly viscous material flow through an adjustable crystal lattice. Instead of the traditional decomposition rule considering the deformation gradient as a product of the elastic and plastic parts, the proposed model is based on its rate form: the velocity gradient consists of the lattice velocity gradient and the sum of the velocity gradients corresponding to the slip rates of individual slip systems; the slip strains themselves are not defined in the model. The geometrical changes caused by material flow and the slip strains can be specified a posteriori. Crystal lattice distortions are measured with respect to a lattice reference configuration. In an adopted rigid plastic approximation the lattice distortions are reduced to rotations. Constitutive equations incorporate non-local hardening caused by close range interactions among dislocations.