Preferences help
enabled [disable] Abstract
Number of results
2012 | 122 | 6 | 1121-1124
Article title

Improved Performance and Spectral Features of Complex Porous Silicon Structure Containing Silicon Solar Cells

Title variants
Languages of publication
This work presents porous silicon technology, adapted to improve the characteristics of monocrystalline silicon solar cell. This is achieved by taking advantage of properties provided by porous silicon technology in production of diverse structures in the material. We produce a porous silicon derivative, which is mostly hidden in the emitter of solar cell. Research of the initial and modified solar cells was made by measuring current-voltage characteristics under illumination of a 5000 K xenon lamp. Spectrally resolved studies of current-voltage characteristics were carried out using radiation of halogen lamps and diffraction grating monochromator. Studies revealed that the manufacturing of buried porous silicon structure improves solar cell performance by increasing the fill factor of the modified solar cell current-voltage characteristics, maximum output power and efficiency, when compared to unmodified ones. Spectral studies revealed that the above-mentioned improvement differs for various sections of light spectrum. Largest relative enhancement of solar cell current was observed at the wavelengths of Δ λ = 450-550 nm. We consider the cumulative result of several effects resulting in solar cell efficiency enhancement. Most of them were the influence of porosity on effective optical path length and better anti-reflecting properties of multiple porous structures.
  • Vilnius Gediminas Technical University, Sauletekio all. 11, Vilnius LT 10223, Lithuania
  • Vilnius Gediminas Technical University, Sauletekio all. 11, Vilnius LT 10223, Lithuania
  • Vilnius Gediminas Technical University, Sauletekio all. 11, Vilnius LT 10223, Lithuania
  • Vilnius Gediminas Technical University, Sauletekio all. 11, Vilnius LT 10223, Lithuania
  • 1. L. Canham, Appl. Phys. Lett. 57, 1046 (1990)
  • 2. V. Lehmann, U. Goesele, Appl. Phys. Lett. 58, 856 (1991)
  • 3. A. Prasad, S. Balakrishnan, S.K. Jain, G.C. Jain, J. Electrochem. Soc. 129, 596 (1982)
  • 4. P. Menna, G. Di Francia, V. La Ferrara, Sol. Energy Mater. Solar Cells 37, 13 (1995)
  • 5. K. Grigoras, A. Krotkus, V. Jasutis, D. Sulienė, V. Pačebutas, J. Nijs, J. Szlufcik, Lith. J. Phys. 35, 247 (1995)
  • 6. V. Pačebutas, K. Grigoras, A. Krotkus, Phys. Scr. 69, 255 (1997)
  • 7. M. Lipinski, P. Panek, S. Bastide, C. Levy-Clement, in: Porous Semicond. Science and Technology, 3d Int. Conf., Technical University of Valencia, Spain 2002, Ext. Abstr. 97
  • 8. G. Kopitkovas, I. Mikulskas, K. Grigoras, I. Šimkienė, R. Tamošiūnas, Appl. Phys. A 73, 495 (2001)
  • 9. K. Grigoras, A. Krotkus, V. Pačebutas, I. Šimkienė, Proc. SPIE 3580, 158 (1997)
  • 10. V.Yu. Yerochov, I.I. Melnik, Renew. Sustain. Energy Rev. 3, 291 (1999)
  • 11. I. Kuzma-Filipek, F. Duerinckx, E. van Kerschaver, K. van Nieuwenhuysen, G. Beaucarne, J. Poortmans, J. Appl. Phys. 104, 073529 (2008)
  • 12. J. van Hoeymissen, V. Depauw, I. Kuzma-Filipek, K. van Nieuwenhuysen, M. Recaman Payo, Yu Qiu, I. Gordon, J. Poortmans, Phys. Status Solidi A 208, 1433 (2011)
  • 13. A. Ramizy, Z. Hassan, K. Omar, Y. Al-Douri, M.A. Mahdi, Appl. Surf. Sci. 257, 6112 (2011)
  • 14. E. Shatkovskis, R. Mitkevicius, V. Zagadskij, J. Stupakova, in: 4th Int. Conf. Radiation Interaction with Materials and Its Use in Technologies 2012, Kaunas (Lithuania), 2012, Technologija, Kaunas 2012, Program and Materials, p. 169
  • 15. V. Lehmann, Electrochemistry of Silicon, Wiley-VCH, Weinheim 2002, p. 277
  • 16. L. Pavesi, Riv. Nuovo Cimento 20, 1 (1997)
  • 17. E. Yablonovitch, G.D. Cody, IEEE Trans. Electron Dev. ED-29, 300 (1982)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.