PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 122 | 6 | 1111-1114
Article title

Influence of Growth Conditions and Doping on Physical Properties of Gallium Antimonide Single Crystals

Content
Title variants
Languages of publication
EN
Abstracts
EN
Gallium antimonide (GaSb) single crystals were grown by modified Czochralski method integrated with in situ synthesis in a flowing atmosphere of pure hydrogen. The influence of charge material purity as well as other technological parameters on GaSb crystals quality was investigated. High purity undoped GaSb single crystals were grown with residual acceptors concentration < 1.4 × 10^{17} cm^{-3} and high mobility ≈ 690 cm^2/Vs (at 300 K). P-type GaSb crystals were doped with silicon (carrier concentration up to 2 × 10^{19} cm^{-3}) and with zinc (up to 1 × 10^{19} cm^{-3}). Tellurium doped n-type GaSb single crystals were obtained with concentration up to 2 × 10^{18} cm^{-3}. Electrical parameters were investigated by the Hall measurements (300 K and 77 K). Temperature dependent Hall measurements (10 ÷ 300 K) were used to compare the quality of undoped GaSb (obtained from Sb of different purity). Dopant concentration was estimated by glow discharge mass spectroscopy analysis. Axial and radial distribution of carrier concentration were investigated especially for Te-doped crystals (low segregation coefficient of Te in GaSb). Great contribution of compensation and self-compensation mechanisms is shown especially for the beginning part of grown crystals and for low Te-doping level. Radial distribution of physical properties for crystals grown in 〈100〉 direction is not axisymmetrical especially for doped GaSb crystals.
Keywords
Contributors
author
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
author
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
References
  • 1. W.T. Tsang, T.H. Chiu, W. Kisker, J.A. Ditzenberger, Appl. Phys. Lett. 46, 283 (1985)
  • 2. H. Lee, P.K. York, R.J. Menna, R.U. Martinelli, D. Garbuzov, S.Y. Narayan, J. Cryst. Growth 150, 1354 (1995)
  • 3. S. Luca, J.L. Santailler, J. Rothman, J.P. Belle, C. Calvat, G. Basset, A. Passero, V.P. Khvostikov, N.S. Potapovich, R.V. Levin, J. Sol. Ener. Eng. 129, 304 (2007)
  • 4. V.P. Khvostikov, J.L. Santailler, J. Rothman, J.P. Bell, M. Couchaud, C. Calvat, G. Basset, A. Passero, O.A. Khvostikova, M.Z. Shvarts, AIP Conf. Proc. 890, 198 (2007)
  • 5. M.A. Afrailov, L.A. Andreev, E.V. Kunitsyna, M.P. Mikhailova, Y.P. Yakovlev, K. Erturk, AIP Conf. Proc. 899, 447 (2007)
  • 6. D. Lackner, O.J. Pitts, S. Najmi, P. Sandhu, K.L. Kavanagh, A. Yang, M. Steger, M.L.W. Thewalt, Y. Wang, D.W. McComb, C.R. Bolognesi, S.P. Watkins, J. Cryst. Growth 311, 3563 (2009)
  • 7. J.G. Kim, L. Shterengas, G.L. Belenky, Appl. Phys. Lett. 83, 1926 (2003)
  • 8. A. Ducanchez, L. Cerutti, P. Grech, F. Genty, E. Tournie, Electron. Lett. 45, 265 (2009)
  • 9. M. Motyka, G. Sęk, K. Ryczko, J. Misiewicz, T. Lehnhardt, S. Höfling, A. Forchel, Appl. Phys. Lett. 94, 251901 (2009)
  • 10. F. Meinardi, A. Parisini, L. Tarricone, Semicond. Sci. Technol. 8, 1985 (1993)
  • 11. C.C. Ling, M.K. Lui, S.K. Ma, X.D. Chen, S. Fung, C.D. Beling, Appl. Phys. Lett. 85, 384 (2004)
  • 12. N. Kitamura, T. Kikuchi, M. Kakehi, T. Wada, Jpn. J. Appl. Phys. 23, 1534 (1984)
  • 13. P.S. Dutta, V. Prasad, H.L. Bhat, J. Appl. Phys. 80, 2847 (1996)
  • 14. M.K. Lui, C.C. Ling, Semicond. Sci. Technol. 20, 1157 (2005)
  • 15. F. Meinardi, A. Parsini, L. Tarricone, Semicond. Sci. Technol. 8, 1985 (1993)
  • 16. A.G. Milvidskaya, A.Y. Polyakov, G.P. Kolchina, A.G. Milnes, A.V. Govorkov, N.B. Smirnov, I.V. Tunitskaya, Mater. Sci. Eng. B 22, 279 (1994)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv122n641kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.