Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 122 | 6 | 1099-1101

Article title

Renormalization Group Approach for the Double Exchange Ferromagnets

Content

Title variants

Languages of publication

EN

Abstracts

EN
The discovery of the colossal magnetoresistance (CMR) in the manganese oxides with perovskite structures T_1 - x DMnO_3 (T = La, Pr, Nd; D=Sr, Ca, Ba, Pb) and its potential technological application motivated theoretical and experimental researchers to study the itinerant ferromagnetism. A first theoretical description of this phenomenon in terms of the double-exchange mechanism was given a long time ago by Zener. In this model, the spin orientation of adjacent Mn-moments is associated with kinetic exchange of conduction e_g electrons. Consequently, alignment of the core Mn-spins by an external magnetic field causes higher conductivity. The Mn ions are considered as localized forming a spin of S = 3/2 and they are coupled to the itinerant electrons by a strong ferromagnetic Hund coupling, J_H > 0. We apply the flow equation technique (nonperturbative method, based on continuous canonical transformation) to the double-exchange model for ferromagnetism described by the Kondo type Hamiltonian. We want to eliminate the interaction term responsible for non-conservation of magnon number and to take into account fermion and magnon degrees of freedom. We express the spin operators of Mn ions via the magnon operators (the Holstein-Primakoff transformation) and investigate the magnon excitation spectrum determined by Green's function.

Keywords

Contributors

author
  • Institute of Physics, M. Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
author
  • Institute of Physics, M. Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland

References

  • 1. C. Zener, Phys. Rev. B 82, 403 (1951)
  • 2. P.W. Anderson, H. Hasegawa, Phys. Rev. B 100, 675 (1955); P.G. De Gennes, Phys. Rev. 118, 141 (1960)
  • 3. E.L. Nagaev, Phys. Rev. B 58, 827 (1998)
  • 4. D.I. Golosov, Phys. Rev. Lett. 84, 3974 (2000)
  • 5. T. Domański, Eur. Phys. J. B 23, 49 (2001)
  • 6. Yu-Li Lee, Yu-Wen Lee, Phys. Rev. B 75, 064411 (2007)
  • 7. D.I. Golosov, Phys. Rev. B 71, 014428 (2005)
  • 8. A. Schwabe, W. Nolting, Phys. Rev. B 80, 2114408 (2009)
  • 9. N.A. Yazdani, M.P. Kennett, Phys. Rev. B 83, 134405 (2011)
  • 10. F. Wegner, Ann. Phys. (Leipzig) 3, 77 (1994)
  • 11. S.D. Głazek, K.G. Wilson, Phys. Rev. D 49, 4214 (1994); Phys. Rev. D 48, 5863 (1993)
  • 12. S. Kehrein, The Flow Equation Approach to Many-Particle Systems, Springer Tracts in Modern Physics, Vol. 215, Springer, Berlin 2006
  • 13. M. Zapalska, T. Domański, Acta Phys. Pol. A 121, 854 (2012)
  • 14. M. Zapalska, T. Domański, Phys. Rev. B 84, 174520 (2011)
  • 15. T. Kasuya, Prog. Theor. Phys. 16, 45 (1956)%

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv122n637kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.