Title variants
Languages of publication
Abstracts
In this paper we present our theoretical approach for the description of the light guidance in photonic liquid crystal fibers. In particular, we focus on the numerical methods allowing for a full implementation of the liquid crystals properties (i.e., including their optical anisotropy and molecular orientation), with a final target in characterizing photonic liquid crystal fibers with accessible computational effort. For this purpose suitable analytical formulae required for a full-vectorial description of the optical modes in photonic liquid crystal fibers have been derived. In addition, computational schemes allowing for numerical implementation of theoretical formulations (with the use of the finite-difference scheme) have been developed, validated and optimized. Their numerical convergence has been checked for different structures, as well as for different input parameters (e.g., grid-size). Obtained results have been compared to those analytically calculated, known from literature and/or got with use of commercial software. Moreover, the implemented schemes have been examined in accordance with experimental tests performed on the photonic liquid crystal fiber of interest.
Discipline
- 42.70.Qs: Photonic bandgap materials(for photonic crystal lasers, see 42.55.Tv)
- 42.25.Bs: Wave propagation, transmission and absorption[see also 41.20.Jb—in electromagnetism; for propagation in atmosphere, see 42.68.Ay; see also 52.40.Db Electromagnetic (nonlaser) radiation interactions with plasma and 52.38-r Laser-plasma interactions—in plasma physics]
- 02.60.Cb: Numerical simulation; solution of equations
- 02.70.Bf: Finite-difference methods
- 42.81.Wg: Other fiber-optical devices(for fiber lasers, see 42.55.Wd)
- 42.70.Df: Liquid crystals(for structure of liquid crystals, see 61.30.-v)
Journal
Year
Volume
Issue
Pages
880-890
Physical description
Dates
published
2012-11
Contributors
author
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
author
- Institute of Micromechanics and Photonics, Warsaw University of Technology A. Boboli 8, 02-525 Warsaw, Poland
References
- [1] D.B. Eggleton, Ch. Kerbage, P. Westbrook, R. Windeler, A. Hale, Opt. Exp. 9, 698 (2001)
- [2] P.St.J. Russell, Science 299, 358 (2003)
- [3] C. Knight, Nature 424, 847 (2003)
- [4] T.R. Woliński, K. Szaniawska, K. Bondarczuk, P. Lesiak, A.W. Domański, R. Dąbrowski, E. Nowinowski-Kruszelnicki, Opto-Electron. Rev. 13, 59 (2005)
- [5] T.R. Woliński, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domański, R. Dąbrowski, E. Nowinowski-Kruszelnicki, J. Wójcik, Meas. Sci. Technol. 17, 985 (2006)
- [6] F. Du, Y.-Q. Lu, S.-T. Wu, Appl. Phys. Lett. 85, 2181 (2004)
- [7] T.T. Larsen, A. Bjarklev, D.S. Hermann, J. Broeng, Opt. Exp. 11, 2589 (2003)
- [8] S. Ertman, T.R. Woliński, J. Beeckman, K. Neyts, P.J.M. Vanbrabant, R. James, F.A. Fernández, Acta Phys. Pol. A 118, 1113 (2010)
- [9] A. Czapla, W.J. Bock, T.R. Woliński, R. Dąbrowski, E. Nowinowski-Kruszelnicki, Acta Phys. Pol. A 120, 589 (2011)
- [10] T.R. Woliński, S. Ertman, D. Budaszewski, M. Chychłowski, A. Czapla, R. Dąbrowski, A.W. Domański, P. Mergo, E. Nowinowski-Kruszelnicki, K.A. Rutkowska, M. Sierakowski, M. Tefelska, Phot. Lett. Poland 3, 20 (2011)
- [11] C.-H. Lee, C.-H. Chen, C.-L. Kao, C.-P. Yu, S.-M. Yeh, W.-H. Cheng, T.-H. Lin, Opt. Exp. 18, 2814 (2010)
- [12] D. Gloge, Appl. Opt. 10, 2252 (1971)
- [13] K. Saitoh, M. Koshiba, J. Lightwave Technol. 23, 3580 (2005)
- [14] Z. Zhu, T.G. Brown, Opt. Exp. 10, 853 (2002)
- [15] K. Bierwirth, N. Schulz, F. Arndt, IEEE Trans. Microwave Theory Techn. MTT-34, 1104 (1986)
- [16] M.S. Stern, IEEE Proc. 135, 56 (1988)
- [17] P. Lüsse, P. Stuwe, J. Schule, H.-G. Unger, J. Lightwave Technol. 12, 487 (1994)
- [18] A.B. Fallahkhair, K.S. Li, T.E. Murphy, J. Lightwave Technol. 26, 1423 (2008)
- [19] K.S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966)
- [20] S. Guo, F. Wu, S. Albin, R. Rogowski, Opt. Exp. 12, 1741 (2004)
- [21] C.-P. Yu, H.-C. Chang, Opt. Exp. 12, 6165 (2004)
- [22] M.-Y. Chen, S.-M. Hsu, H.-C. Chang, Opt. Exp. 17, 5965 (2009)
- [23] J. Riishede, N.A. Mortensen, Jesper Lægsgaard, J. Opt. A: Pure Appl. Opt. 5, 534 (2003)
- [24] M.J. Steel, T.P. White, C.M. Sterke, R.C. McPhedran, L.C. Botten, Opt. Lett. 26, 488 (2001)
- [25] M. Koshiba, K. Saitoh, IEEE Phot. Techn. Lett. 13, 1313 (2001)
- [26] D. Mogilevtsev, T.A. Birks, P.S.J. Russell, J. Lightwave Technol. 17, 2078 (1999)
- [27] W.P. Huang, C.L. Xu, IEEE J. Quantum Electron. 29, 2639 (1993)
- [28] J. Schirmer, P. Kohns, T. Schmidt-Kaler, A. Muravski, S. Yakovenko, V. Bezborodov, R. Dabrowski, P. Adomenas, Mol. Cryst. Liq. Cryst. 307, 17 (1997)
- [29] M. Medhat, S.Y. El-Zaiat, A. Radi, M.F. Omar, J. Opt. A: Pure Appl. Opt. 4, 174 (2002)
- [30] M.S. Chychłowski, S. Ertman, M.M. Tefelska, T.R. Woliński, E. Nowinowski-Kruszelnicki, O. Yaroshchuk, Acta Phys. Pol. A 118, 1100 (2010)
- [31] J. Sun, C.C. Chan, J. Opt. Soc. Am. B 24, 2640 (2007)
- [32] D.C. Zografopoulos, E.E. Kriezis, J. Lightwave Technol. 27, 773 (2009)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv122n522kz