PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 122 | 4 | 776-780
Article title

Multimodal Transition and Excitability of a Neural Oscillator

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
We analyze the response of the Morris-Lecar model to a periodic train of short current pulses in the period-amplitude plane. For a wide parameter range encompassing both class 2 and class 3 behavior in the Hodgkin classification there is a multimodal transition between the set of odd modes and the set of all modes. It is located between the 2:1 and 3:1 locked-in regions. It is the same dynamic instability as the one discovered earlier in the Hodgkin-Huxley model and observed experimentally in squid giant axons. It appears simultaneously with the bistability of the states 2:1 and 3:1 in the perithreshold regime. These results imply that the multimodal transition may be a universal property of resonant neurons.
Keywords
EN
Year
Volume
122
Issue
4
Pages
776-780
Physical description
Dates
published
2012-10
received
2012-03-29
(unknown)
2012-06-27
References
  • [1] A.L. Hodgkin, J. Physiol. (London) 107, 165 (1948)
  • [2] H.R. Wilson, Spikes, Decisions, and Actions: The Dynamic Foundations of Neuroscience, Oxford University Press, Oxford 1999
  • [3] J.A. Connor, D. Walter, R. McKown, Biophys. J. 18, 81 (1977)
  • [4] G.B. Ermentrout, Neural Comput. 8, 979 (1996)
  • [5] G.B. Ermentrout, N. Kopell, SIAM J. Appl. Math. 46, 233 (1986)
  • [6] G.F. Hoppensteadt, E.M. Izhikevich, Weakly Connected Neural Networks, Springer, New York 1997
  • [7] B.S. Gutkin, G.B. Ermentrout, Neural Comput. 10, 1047 (1998)
  • [8] X.-J. Wang, G. Buzsáki, J. Neurosci. 16, 6402 (1996)
  • [9] A.L. Hodgkin, A.F. Huxley, J. Physiol. (London) 117, 500 (1952)
  • [10] T. Tateno, A. Harsch, H.P.C. Robinson, J. Neurophysiol. 92, 2283 (2004)
  • [11] T. Tateno, H.P.C. Robinson, J. Neurophysiol. 95, 2650 (2006)
  • [12] C. Morris, H. Lecar, Biophys. J. 35, 193 (1981)
  • [13] J. Rinzel, G.B. Ermentrout, in: Methods in Neuronal Modeling: From Ions to Networks, Eds. C. Koch, I. Segev, MIT Press, Cambridge (MA) 1998, p. 251
  • [14] J.L. Hindmarsh, R.M. Rose, Proc. R. Soc. Lond. B 221, 87 (1984)
  • [15] S.A. Prescott, Y. De Koninck, T.J. Sejnowski, PLoS Comput. Biol. 4, e1000198 (2008)
  • [16] J.R. Clay, J. Neurophysiol. 80, 903 (1998)
  • [17] J.R. Clay, Prog. Biophys. Mol. Biol. 88, 59 (2005)
  • [18] J.R. Clay, D. Paydarfar, D.B. Forger, J. R. Soc. Interface 5, 1421 (2008)
  • [19] L.S. Borkowski, Phys. Rev. E 83, 051901 (2011)
  • [20] H.S. Strogatz, Nonlinear Dynamics and Chaos, Perseus, Cambridge 1994
  • [21] L.S. Borkowski, Phys. Rev. E 80, 051914 (2009)
  • [22] N. Takahashi, Y. Hanyu, T. Musha, R. Kubo, G. Matsumoto, Physica D 43, 318 (1990)
  • [23] L.S. Borkowski, Phys. Rev. E 82, 041909 (2010)
  • [24] M. St-Hilaire, A. Longtin, J. Comput. Neurosci. 16, 299 (2004)
  • [25] R. Naud, N. Marcille, C. Clopath, W. Gerstner, Biol. Cybern. 99, 335 (2008)
  • [26] L.S. Borkowski, arXiv.org:1105.5376 [physics.bio-ph]
  • [27] H. Wang, L. Wang, L. Yu, Y. Chen, Phys. Rev. E 83, 021915 (2011)
  • [28] D.E. O'Gorman, J.A. White, C.A. Shera, J. Assoc. Res. Otolaryngol. 10, 251 (2009)
  • [29] C.C. McIntyre, W.M. Grill, Ann. Biomed. Eng. 28, 219 (2000)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv122n425kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.