As of 1 April 2026, the PSJD database will become an archive and will no longer accept new data. Current publications from Polish scientific journals are available through the Library of Science: https://bibliotekanauki.pl
Linear-response theory is combined with the Landauer viewpoint to describe quantitatively transport in a four-lead mesoscopic structure within the presence of a uniform magnetic field. A new multichannel magnetoconductance formula is derived in the case where the magnetic field is perpendicular to the current-flow. The invariance under magnetic reversal test is confirmed.
Laboratoire de Physique Théorique, Université Mentouri-Constantine, Constantine 25000, Algeria
Département de Physique, Faculté des Sciences Exactes et des Sciences de la Vie et de la Nature, Université Larbi Ben M'Hidi, Oum El Bouaghi 04200, Algeria
References
[1] R. Landauer, IBM J. Res. Dev. 1, 223 (1957)
[2] R. Landauer, Philos. Mag. 21, 863 (1970)
[3] A.D. Stone, A. Szafer, IBM J. Res. Develop. 32, 384 (1988)
[4] Y. Imry, in: Perspectives on Condensed Matter Physics, Eds. G. Grinstein, E. Mazenko, World Sci., Singapore 1986, p. 101; Y. Imry, Introduction to Mesoscopic Physics, Oxford University, New York 1997
[5] F. Benamira, Ph.D. Thesis, Université Montréal, Canada 1996
[6] M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B 31, 6207 (1985)
[7] A. Abdellaoui, F. Benamira, Phys. Status Solidi C 1, 3769 (2004)
[8] A. Abdellaoui, Ph.D. Thesis, Constantine, Algeria 2006
[9] H.U. Baranger, A.D. Stone, Phys. Rev. B 40, 8169 (1989)
[10] S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge 1995
[11] D.C. Langreth, E. Abrahamas, Phys. Rev. B 24, 2978 (1981)
[12] Y. Imry, R. Landauer, Rev. Mod. Phys. 71, S306 (1999)
[13] J.U. Nöckel, A.D. Stone, H.U. Baranger, Phys. Rev. B 48, 17569 (1993)
[14] K. Shepard, Phys. Rev. B 43, 11623 (1991)
[15] T. Dittrich, P. Hainggi, G.-L. Ingold, B. Kramer, G. Schon, W. Zwerger, Quantum Transport and Dissipation, Wiley-VCH, Weinheim 1998