Preferences help
enabled [disable] Abstract
Number of results
2012 | 122 | 4 | 698-703
Article title

Metal-Semiconductor Transition on the Surface and in the Bulk of Europium Hydride Thin Film

Title variants
Languages of publication
Thin europium films (20-50 nm thick) on a glass substrate were transformed into EuH_x (0 < x < 2) by interaction with H_2 introduced into the reactor in successive calibrated doses. By measuring the pressure, the hydrogen uptake (H/Eu) was determined at every step of the reaction. In situ monitoring of bulk properties (electrical resistance R(H/Eu), relative transparency to light T(H/Eu)/T_0 and (H/Eu) dependent light transparency spectrum) confirms metal-semiconductor transition at room temperature. Both the electrical resistance and optical transparency of the film strongly increase with hydrogen concentration as a consequence of the resulting increase of the content of semiconducting dihydride. Moreover, the course of work function changes ΔΦ(H/Eu) indicates inversion of the charge-transfer direction on the surface. The transition at room temperature from positively to negatively polarized hydrogen adsorbate was observed in situ during hydrogen uptake. As a result, the work function at equilibrium state varies with hydrogen content from +18 to -18 mV with respect to pure metal film, reflecting the change of "mirror potential" generated on the surface due to the accumulation of hydrogen adsorbates in the subsurface region.
Physical description
  • [1] J.H. Huiberts, R. Griessen, J.H. Rector, R.J. Wijngaarden, J.P. Dekker, D.G. de Groot, N.J. Koeman, Nature 380, 231 (1996)
  • [2] P. van der Sluis, M. Ouwerkerk, P.A. Duine, Appl. Phys. Lett. 70, 3356 (1997)
  • [3] J.H. Huiberts, J.H. Rector, R.J. Wijngaarden, S. Jetten, D. de Groot, B. Dam, N.J. Koeman, R. Griessen, B. Hjörvarsson, S. Olafsson, Y.S. Cho, J. Alloys Comp. 239, 158 (1996)
  • [4] G.G. Libowitz, A.J. Maeland, Handbook on the Physics and Chemistry of Rare Earths, Vol. 3 North-Holland, Amsterdam, 1979, Ch. 26
  • [5] P. Vajda, Handbook on the Physics and Chemistry of Rare Earths, Vol. 20, North-Holland, Amsterdam 1995, Ch. 137
  • [6] R.R Arons in: Rare Earth Hydrides; Landolt-Bornstein New Series, Vol. 12c, Ch. 63, Ed. K.H. Hellwedge, Springer-Verlag, Berlin 1982, DOI 10.1007/b19987
  • [7] R.R. Arons, in: Rare Earth Hydrides; Landolt-Bornstein New Series, Vol. 19d1, Ch. 23, Ed. H.P.J. Wijn, Springer-Verlag, Berlin 1991, DOI 10.1007/bb38356
  • [8] F.J.A. den Broeder, S.J. van der Molen, M. Kremers, J.N. Huiberts, D.G. Nagengast, A.T.M. van Gogh, W.H. Huisman, N.J. Koeman, B. Dam, J.H. Rector, S. Plota, M. Haaksma, R.M.N. Hanzen, R.M. Jungblut, P.A. Duine, R. Griessen, Nature 394, 656 (1998)
  • [9] W.E. Vargas, D.E. Azofeifa, N. Clark, J. Phys. D, Appl. Phys. 42, 015416 (2009)
  • [10] D.E. Azofeifa, N. Clark, W.E. Vargas, Phys. Status Solidi B 242, 2005 (2005)
  • [11] D.E. Azofeifa, W.E. Vargas, N. Clark, H. Solis, J. Alloys Comp., 446-447, 522 (2007)
  • [12] E. Nowicka, R. Nowakowski, R. Duś, Appl. Surf. Sci. 254, 4346 (2008)
  • [13] M. Knor, R. Nowakowski, E. Nowicka, R. Duś, Langmuir 26, 3302 (2010)
  • [14] M. Knor, R. Nowakowski, R. Duś, Appl. Surf. Sci. 257, 8241 (2011)
  • [15] J.M. Haschke, M.R. Clark, High Temp. Sci. 7, 152 (1975)
  • [16] H. Kohlmann, K. Yvon, J. Alloys Comp. 299, L16 (2000)
  • [17] T. Matsuoka, H. Fujihisa, N. Hirao, Y. Ohishi, T. Mitsui, R. Masuda, M. Seto, Y. Yoda, K. Shimizu, A. Machida, K. Aoki, Phys. Rev. Lett. 107, 025501 (2011)
  • [18] S. Weber, J. Schoenes, J. Appl. Phys. 102, 113110 (2007)
  • [19] E. Nowicka, R. Duś, Surf. Sci. 144, 665 (1984)
  • [20] A. Bachtin, Vacuum 35, 519 (1985)
  • [21] T. Delchar, A. Eberhagen, F.C. Tompkins, J. Sci. Instrum. 40, 105 (1963)
  • [22] R. Duś, E. Nowicka, Langmuir 16, 10258 (2000)
  • [23] R. Duś, E. Nowicka, R. Nowakowski, Langmuir 20, 9138 (2004)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.