PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 122 | 4 | 645-649
Article title

Effect of Expansion-Compression Ratio on Performance of the Miller cycle

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The objective of this study is to analyze the effect of expansion-compression ratio on the performance of dual cycle. Using finite-time thermodynamics, the relations between thermal efficiency, power output and compression ratio for an air standard Miller cycle have been derived. In the model, the nonlinear relation between the specific heats of working fluid and its temperature, the frictional loss computed according to the mean velocity of the piston, and heat transfer loss are considered. The results show that the power output first increases with the increasing expansion-compression ratio and then starts to decrease. Comparisons of the power output of the Miller, Otto, and Atkinson cycles show that if compression ratio is less than certain value, the power output for Otto cycle is higher, while if compression ratio exceeds certain value, the power output for the Miller cycle is higher. With further increase in compression ratio, the power output for Atkinson cycle is higher. In high compression ratio, the power output of the Miller cycle is higher. The results obtained in the present study provide guidance to the performance evaluation and improvement for practical internal combustion engines.
Keywords
Contributors
author
  • Department of Agriculture Machine Mechanics, Shahrekord University, P.O. Box 115, Shahrekord, Iran
References
  • [1] B. Andresen, P. Salamon, R.S. Berry, Phys. Today 38, 62 (1984)
  • [2] L. Chen, C. Wu, F. Sun, J. Non-Equilib. Thermodyn. 24, 327 (1999)
  • [3] L. Chen, F. Sun, Advances in Finite Time Thermodynamics: Analysis and Optimization, Nova Sci. Publ., New York 2004
  • [4] R. Ebrahimi, J. Energy Instit. 84, 30 (2011)
  • [5] R. Ebrahimi, J. Energy Inst. 84, 38 (2011)
  • [6] R.H. Miller, ASME Trans. 69, 453 (1947)
  • [7] U. Kesgin, Int. Energy Res. 29, 189 (2005)
  • [8] K. Hatamura, M. Hayakawa, T. Goto, M. Hitomi, JSAE Rev. 18, 101 (1997)
  • [9] Y. Fukuzawa, H. Shimoda, Y. Kakuhama, H. Endo, K. Tanaka, Techn. Rev. 38, 146 (2001)
  • [10] A. Al-Sarkhi, B.A. Akash, Int. Commun. Heat Mass Transfer 29, 1159 (2002)
  • [11] M. Sasaki, S. Araki, T. Miyata, T. Kawaji, JSAE Rev. 23, 451 (2002)
  • [12] C. Wu, P.V. Puzinauskas, J.S. Tsai, Appl. Therm. Eng. 23, 511 (2003)
  • [13] Y. Ge, L. Chen, F. Sun, C. Wu, Int. Comm. Heat Mass Transfer 32, 1045 (2005)
  • [14] Y. Ge, L. Chen, F. Sun, C. Wu, Appl. Energy 81, 397 (2005)
  • [15] Y. Ge, L. Chen, F. Sun, C. Wu, Int. J. Amb. Energy 26, 203 (2005)
  • [16] L. Chen, W. Zhang, F. Sun, Appl. Energy 84, 512 (2007)
  • [17] Y. Ge, L. Chen, F. Sun, Appl. Energy 85, 618 (2008)
  • [18] R. Sonntag, C. Borgnakke, G. Van Wylen, Fundamentals of Thermodynamics, 5th ed., Wiley, New York 1998
  • [19] Y.-L. Ge, L. Chen, F.-R. Sun, Proc. IMechE, Part D: J. Automob. Eng. 222, 887 (2008)
  • [20] Y. Ge, L. Chen, F. Sun, Appl. Energy 85, 618 (2008)
  • [21] R. Ebrahimi, J. Am. Sci. 5, 58 (2009)
  • [22] L. Chen, F. Zeng, F. Sun, C. Wu, Energy 21, 1201 (1996)
  • [23] S.A. Klein, Trans. ASME J. Eng. Gas Turbines Power 113, 511 (1991)
  • [24] R. Ebrahimi, J. Energy Instit. 83, 1 (2010)
  • [25] A. Al-Sarkhi, J.O. Jaber, M. Abu-Qudais, S.D. Probert, Appl. Energy 83, 153 (2006)
  • [26] L. Chen, T. Zheng, F. Sun, C. Wu, Int. J. Amb. Energy 24, 195 (2003)
  • [27] R. Ebrahimi, Acta Phys. Pol. A 117, 887 (2010)
  • [28] R. Ebrahimi, Acta Phys. Pol. A 118, 534 (2010)
  • [29] Y. Ge, L. Chen, F. Sun, C. Wu, J. Energy Instit. 80, 52 (2007)
  • [30] Y. Ust, B. Sahin, A. Kodal, J. Energy Instit. 82, 48 (2009)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv122n401kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.