Journal
Article title
Title variants
Languages of publication
Abstracts
We report on confocal microscopy imaging of hybrid nanostructures composed of silver nanowires and corroles. Both nanomaterials were separated by a 30 nm thick SiO_2 spacer in order to inhibit fluorescence quenching. The results show that for such a hybrid nanostructure the average enhancement of the fluorescence intensity reached 2.5. Importantly, the coupling to plasmon excitations in metallic nanowires leaves no effect on the fluorescence spectrum of the organic molecules.
Discipline
- 33.50.-j: Fluorescence and phosphorescence; radiationless transitions, quenching (intersystem crossing, internal conversion)(for energy transfer, see also section 34; for biophysical applications, see 87.64.kv)
- 81.07.-b: Nanoscale materials and structures: fabrication and characterization(for structure of nanoscale materials, see 61.46.-w; for nanostructured materials in electrochemistry, see 82.45.Yz; see also 62.23.-c Structural classes of nanoscale systems in mechanical properties of condensed matter)
- 73.20.Mf: Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)(for collective excitations in quantum Hall effects, see 73.43.Lp)
- 81.07.Pr: Organic-inorganic hybrid nanostructures
- 78.67.Uh: Nanowires
Journal
Year
Volume
Issue
Pages
333-336
Physical description
Dates
published
2012-08
Contributors
author
- Institute of Physics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland
author
- Institute of Physics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland
author
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
author
- Institute of Physics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland
author
- Institute of Solid State Physics, Johanes Kepler University, A-4040 Linz, Austria
author
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
author
- Institute of Physics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland
References
- 1. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York 2006
- 2. Th. Basché, W.E. Moerner, M. Orrit, U.P. Wild, Single Molecule Optical Detection, Imaging and Spectroscopy, VCH, Weinheim 1997
- 3. K.P. Hewaparakrama, A. Wilson, S. Mackowski, H.E. Jackson, L.M. Smith, G. Karczewski, Appl. Phys. Lett. 85, 5463 (2004)
- 4. K. Karrai, X. Lorenz, L. Novotny, Appl. Phys. Lett. 77, 3459 (2000)
- 5. B. Krajnik, T. Schulte, D. Piątkowski, N. Czechowski, E. Hofmann, S. Mackowski, Cent. Eur. J. Phys. 2, 293 (2011)
- 6. A. Hartschuh, H.N. Pedrosa, L. Novotny, T.D. Krauss, Science 301, 1354 (2003)
- 7. Y. Fu, J.R. Lakowicz, Plasmonics 2, 1 (2007)
- 8. P. Anger, P. Bharadwaj, L. Novotny, Phys. Rev. Lett. 96, 113002 (2006)
- 9. S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006)
- 10. Ł. Bujak, N. Czechowski, D. Piatkowski, R. Litvin, S. Mackowski, T.H.P. Brotosudarmo, R.J. Cogdell, S. Pichler, W. Heiss, Appl. Phys. Lett. 99, 173701 (2011)
- 11. N. Czechowski, P. Nyga, M.K. Schmidt, T.H.P. Brotosudarmo, H. Scheer, D. Piatkowski, S. Mackowski, Plasmonics 7, 115 (2012)
- 12. J.B. Nieder, R. Bittl, M. Brecht, Angew. Chem. Int. Ed. 49, 10217 (2010)
- 13. S.R. Beyer, S. Ullrich, S. Kudera, A.T. Gardiner, R.J. Cogdell, J. Köhler, Nano Lett. 11, 4897 (2011)
- 14. Z. Gross, N. Galili, I. Saltsman, Angew. Chem. Int. Ed. 38, 1427 (1999); R. Paolesse, S. Nardis, F. Sagone, R.M. Khoury, J. Org. Chem. 66, 550 (2001); B. Koszarna, D.T. Gryko, J. Org. Chem. 71, 3707 (2006)
- 15. M. Tasior, D.T. Gryko, D.J. Pielacińska, A. Zanell, L. Flamigni, Chem. Asian J. 1, 130 (2010)
- 16. D.T. Gryko, B. Koszarna, Org. Biomol. Chem. 1, 350 (2003)
- 17. Y. Sun, Y. Yin, B.T. Mayers, T. Herricks, Y. Xia, Chem. Mater. 14, 4736 (2002)
- 18. B. Ventura, A. Degli Esposti, B. Koszarna, D.T. Gryko, L. Flamigni, New J. Chem. 29, 1559 (2005)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv122n2p20kz