Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 122 | 2 | 324-328

Article title

Atomistic Calculation of Coulomb Interactions in Semiconductor Nanocrystals: Role of Surface Passivation and Composition Details

Content

Title variants

Languages of publication

EN

Abstracts

EN
We report a theoretical investigation of electronic properties of semiconductor InAs and GaAs nanocrystals. Our calculation scheme starts with the single particle calculation using atomistic tight-binding model including spin-orbital interaction and d-orbitals. Then the exciton binding energies are calculated with screened Coulomb interaction. We study the role of surface passivation effects by varying value of surface passivation potential. We compare results obtained with dot center positioned on different lattice sites thus containing different number of anion and cations. We conclude that passivation of surface states affects significantly single particle energies and the value of electron-hole Coulomb attraction. Interestingly, due to limited screening, the short-range (on-site) contribution to the electron-hole Coulomb attraction plays significant role for small nanocrystals with radius smaller than 1 nm.

Keywords

Contributors

author
  • Instytut Fizyki UMK, Grudziądzka 5, 87-100 Toruń, Poland
author
  • Instytut Fizyki UMK, Grudziądzka 5, 87-100 Toruń, Poland
author
  • Instytut Fizyki UMK, Grudziądzka 5, 87-100 Toruń, Poland

References

  • 1. L. Jacak, P. Hawrylak, A. Wojs, Quantum Dots, Springer, Berlin 1998
  • 2. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures, Wiley, New York 1998
  • 3. Nanocrystal Quantum Dots, Ed. V.I. Klimov, CRC Press, New York 2012
  • 4. C. Delerue, M. Lannoo, Nanostructures: Theory and Modelling, Springer Nanosciences and Technology Series, Springer, Berlin 2004
  • 5. P.E. Lippens, M. Lannoo, Phys. Rev. B 39, 10935 (1989)
  • 6. A. Franceschetti, A. Zunger, Phys. Rev. Lett. 78, 915 (1997)
  • 7. K. Leung, K.B. Whaley, Phys. Rev. B 56, 7455 (1997)
  • 8. J.G. Diaz, G.W. Bryant, Phys. Rev. B 73, 075329 (2006)
  • 9. J.-W. Luo, A. Franceschetti, A. Zunger, Phys. Rev. B 78, 035306 (2008)
  • 10. A. Franceschetti, L.W. Wang, H. Fu, A. Zunger, Phys. Rev. B 58, 13367 (1998)
  • 11. Z. Lin, A. Franceschetti, M.T. Lusk, ACS Nano 5, 2503 (2011)
  • 12. J.M. Jancu, R. Scholz, F. Beltram, F. Bassani, Phys. Rev. B 57, 6493 (1998)
  • 13. M. Zielinski, M. Korkusinski, P. Hawrylak, Phys. Rev. B 81, 085301 (2010)
  • 14. D.J. Chadi, Phys. Rev. B 16, 790 (1977)
  • 15. Z. Zhou, L. Brus, R. Friesner, Nanoletters 3, 163 (2003)
  • 16. X. Huang, E. Lindgren, J.R. Chelikowsky, Phys. Rev. B 71, 165328 (2005)
  • 17. G.W. Bryant, W. Jaskólski, J. Phys. Chem. B 109, 19650 (2005)
  • 18. G.W. Bryant, J. Comput. Theor. Nanosci. 6, 1 (2009)
  • 19. S. Lee, F. Oyafuso, P. von Allmen, G. Klimeck, Phys. Rev. B 69, 045316 (2004)
  • 20. S. Schulz, S. Schumacher, G. Czycholl, Phys. Rev. B 73, 245327 (2006)
  • 21. S. Lee, L. Jönsson, J.W. Wilkins, G.W. Bryant, G. Klimeck, Phys. Rev. B 63, 195318 (2001)
  • 22. C. Delerue, M. Lannoo, G. Allan, Phys. Rev. B 56, 15306 (1997)
  • 23. G. Allan, C. Delerue, M. Lannoo, E. Martin, Phys. Rev. B 52, 11982 (1995)
  • 24. C. Delerue, M. Lannoo, G. Allan, Phys. Rev. Lett. 84, 2457 (1999)
  • 25. A. Franceschetti, M.C. Troparevsky, Phys. Rev. B 72, 165311 (2005)
  • 26. M. Cardona, Phys. Status Solidi B 118, 463 (1983)
  • 27. L. Brus, J. Phys. Chem. 90, 2555 (1986)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv122n2p18kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.