PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 122 | 2 | 289-293
Article title

Hybrid Quantum Dot-Metal Nanoparticle Systems: Connecting the Dots

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Hybrid molecules formed by coupling semiconductor quantum dots to metal nanoparticle nanoantennas provide a new paradigm for directed nanoscale transfer of quantum information. To assess this possibility, we study theoretically the response of these hybrid molecules to applied optical fields. Quantum-coherent time-evolution of the semiconductor quantum dots in the hybrid molecule is found by solving the semiconductor quantum dot density matrix equations. We study hybrid molecules in the weak and strong coupling regimes. In strongly driven, strongly dipole-coupled semiconductor quantum dot-metal nanoparticle hybrids with spherical metal nanoparticles, interference, dispersion near resonance and self interaction define the metal nanoparticle/semiconductor quantum dot coupling and lead to the Fano resonances, exciton induced transparency, suppressed semiconductor quantum dot response and bistability. More complicated response can be tailored by using metal nanoparticle shape and the placement of semiconductor quantum dots to control the local near-fields that couple the metal nanoparticles and semiconductor quantum dots. We describe how coupling to metal nanoparticle dark modes and higher order multipolar modes impact interference and self-interaction effects. The physics of the metal nanoparticle/semiconductor quantum dot coupling is outlined.
Keywords
Contributors
author
  • Joint Quantum Institute and Department of Physics, University of Maryland, College Park, MD, 20742-4111, USA
author
  • Joint Quantum Institute and Quantum Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899-8423, USA
References
  • 1. D.E. Chang, A.S. Sorensen, P.R. Hemmer, M.D. Lukin, Phys. Rev. Lett. 97, 053002 (2006)
  • 2. M.L. Brongersma, J.W. Hartman, H.A. Atwater, Phys. Rev. B 62, R16356 (2000)
  • 3. W. Zhang, A.O. Govorov, G.W. Bryant, Phys. Rev. Lett. 97, 146804 (2006)
  • 4. J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, A.O. Govorov, Phys. Rev. B 77, 165301 (2008)
  • 5. R.D. Artuso, G.W. Bryant, Nano Lett. 8, 2106 (2008)
  • 6. R.D. Artuso, G.W. Bryant, Phys. Rev. B 82, 195419 (2010)
  • 7. S.M. Sadeghi, Phys. Rev. B 79, 233309 (2009)
  • 8. S.M. Sadeghi, Nanotechnology 20, 225401 (2009)
  • 9. S.M. Sadeghi, L. Deng, X. Li, W.-P. Huang, Nanotechnology 20, 365401 (2009)
  • 10. S.M. Sadeghi, Nanotechnology 21, 355501 (2010)
  • 11. S.M. Sadeghi, Nanotechnology 21, 455401 (2010)
  • 12. R.D. Artuso, G.W. Bryant, A. Garcia-Etxarri, J. Aizpurua, Phys. Rev. B 83, 235406 (2011)
  • 13. L. Landau, E. Lifshitz, L. Pitaevskii, Electrodynamics of Continuous Media, Butterworth-Heinemann Ltd, Oxford 1984
  • 14. A. Yariv, Quantum Electronics, Wiley, New York 1975
  • 15. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)
  • 16. A.V. Malyshev, V.A. Malysev, Phys. Rev. B 84, 35314 (2011)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv122n2p10kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.