Preferences help
enabled [disable] Abstract
Number of results
2012 | 122 | 1 | 224-229
Article title

Mechanochemical Synthesis and Characterization of II-VI Nanocrystals: Challenge for Cytotoxicity Issues

Title variants
Languages of publication
CdSe@ZnS nanocrystals have been prepared by a two-step solid state mechanochemical synthesis. CdSe prepared from elements in the first step is mixed with ZnS synthesized from zinc acetate and sodium sulfide in the second step. The crystallite size of the new type CdSe@ZnS nanocrystals determined by X-ray diffraction Rietveld refined method was 35 nm and 10 nm for CdSe and ZnS, respectively. Energy dispersive/transmission electron microscopy/energy dispersive spectroscopy methods show good crystallinity of the nanoparticles and scanning electron microscopy elemental mapping illustrate consistent distribution of Cd, Se, Zn and S elements in the bulk of samples. UV-VIS spectra show an onset at 320 nm with calculated bandgap 3.85 eV. This absorption arises from the vibration modes of Zn-S bonds. The nanocrystals show the blue shift from the bandgap of bulk ZnS (3.66 eV). The synthesized CdSe@ZnS nanocrystals have been tested for dissolution, cytotoxicity and L-cysteine conjugation. The dissolution of Cd was less than 0.05 μg mL^{-1} (in comparison with 0.8 μg mL^{-1} which was evidenced for CdSe alone). The very low cytotoxic activity for selected cancer cell lines has been evidenced. CdSe@ZnS nanocrystals coated with L-cysteine are water-soluble and have a great potential in biomedical engineering as fluorescent labels.
Physical description
  • 1. Semiconductor Nanocrystal Quantum Dots, Ed. A.L. Rogach, Springer, Wien 2008
  • 2. W.J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, Ch. Michael, S.C. Williams, R. Boudreau, M.A. Le Gros, C.A. Larabell, A.P. Alivisatos, Nanotechnology 14, R15 (2003)
  • 3. W.C. Chan, S. Nie, Science 281, 2016 (1998)
  • 4. A.M. Derfus, W.C.W. Chan, S.N. Bhatia, Nano Lett. 4, 11 (2004)
  • 5. W.H. Liu, H.S. Choi, J.P. Zimmer, E. Tanaka, J.V. Frangioni, M. Bawendi, J. Am. Chem. Soc. 129, 14530 (2007)
  • 6. J.E. Bowen-Katari, V.L. Colvin, A.P. Alivisatos, J. Phys. Chem. 98, 4109 (1994)
  • 7. Z.A. Peng, X. Peng, J. Am. Chem. Soc. 124, 3343 (2002)
  • 8. R. Hardman, Environ. Health Persp. 114, 165 (2006)
  • 9. M.A. Hines, P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996)
  • 10. I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Nat. Mater. 4, 435 (2005)
  • 11. H.Y. Xie, J.G. Liang, Y. Liu, Z.L. Zhang, D.W. Pang, Z.K. He, Z.X. Lu, W.H. Huang, J. Nanosci. Nanotechnol. 5, 880 (2005)
  • 12. H. Ehrlich, T. Scherba, M. Zhilenko, G. Lisichkin, Mater. Lett. 65, 107 (2011)
  • 13. G.L. Tan, J.H. Du, Q.J. Zhang, J. Alloy. Comp. 468, 421 (2009)
  • 14. E. Dutková, P. Baláž, P. Pourghahramani, S. Velumani, J.A. Ascencio, N.G. Kostova, J. Nanosci. Nanotechnol. 9, 6600 (2009)
  • 15. A. Chatterjee, A. Priryam, S.K. Das, A. Saha, J. Colloid Interf. Sci. 294, 334 (2006)
  • 16. P.K. Sapathy, G.C. Dash, P. Mohanty, Indian J. Chem. 47A, 1199 (2008)
  • 17. H. Bao, X. Cui, C.M. Li, J. Zang, Nanotechnology 18, 455701 (2007)
  • 18. T.J. Mosmann, J. Immunol. Meth. 65, 55 (1983)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.