Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
The theoretical calculation of spectral parameters of electron and exciton quasi-stationary s-states in open spherical quantum dot is performed within the effective mass approximation and rectangular potentials model. The conceptions of probability distribution functions (over quasi-momentum or energy) of electron location inside of quantum dot and their spectral characteristics: generalized resonance energies and widths are introduced. It is shown that the generalized resonance energies and widths, obtained within the distribution functions, satisfy the Heisenberg uncertainty principle for the barrier widths varying from zero to infinity. At the same time, the ordinary resonance energies and widths defined as complex poles of scattering S-matrix, do not satisfy it for the small barrier widths and, therefore, are correct only for the open quantum dots with rather wide potential barriers.
Discipline
- 73.22.Dj: Single particle states
- 73.90.+f: Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures (Restricted to new topics in section 73)
- 73.21.La: Quantum dots
- 71.15.Dx: Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction)
Journal
Year
Volume
Issue
Pages
207-211
Physical description
Dates
published
2012-07
received
2011-12-10
(unknown)
2012-02-10
Contributors
author
- Chernivtsi National University, Kotsiybynsky Str. 2, Chernivtsi, 58012, Ukraine
author
- Chernivtsi National University, Kotsiybynsky Str. 2, Chernivtsi, 58012, Ukraine
author
- Chernivtsi National University, Kotsiybynsky Str. 2, Chernivtsi, 58012, Ukraine
References
- 1. P.H. Siegel, IEEE Trans. Microwave Theory Tech. 52, 2438 (2004)
- 2. W.C.W. Chan, S. Nie, Science 281, 2016 (1998)
- 3. X. Michalet, F.F. Pihaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Science 307, 538 (2005)
- 4. X. Gao, Y. Cui, R.M. Levenson, L.W.K. Chung, S. Nie, Nature Biotechnol. 22, 969 (2004)
- 5. Y.X. Liu, D.Z.-Y. Ting, T.C. McGill, Phys. Rev. B 54, 5675 (1996)
- 6. M. Tkach, V. Holovatsky, O. Voitsekhivska, Physica E 11, 17 (2001)
- 7. N.V. Tkach, Ju.A. Seti, Semiconductors 40, 1083 (2006)
- 8. N.V. Tkach, Yu.A. Seti, G.G. Zegrya, Technical Phys. Lett. 33, 35 (2007)
- 9. S.J. Lee, H.C. Jeon, T.W. Kang, S. Souma, Physica E 40, 2198 (2008)
- 10. N.V. Tkach, Yu.A. Seti, Low Temp. Phys. 35, 556 (2009)
- 11. N.V. Tkach, Ju.A. Seti, Semiconductors 43, 340 (2009)
- 12. A I. Baz', Ya.B. Zel'dovich, A.M. Perelomov, Scattering, Reactions and Decays in Nonrelativistic Quantum Mechanics, 2nd ed., Nauka, Moscow 1971, p. 463
- 13. R.G. Newton, Scattering Theory of Waves and Particles, Springer, New York 2002
- 14. M. Tkach, Ju. Seti, Condens. Matter. Phys. 10, 23 (2007)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv122n1p41kz