PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 122 | 1 | 174-179
Article title

AC Electrical Conductivity and Dielectric Properties of Perovskite (Pb,Ca)TiO_3 Ceramic

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Pb_{1 - x }Ca_{x}TiO_3 perovskite crystalline structure with x = 0, 0.2, 0.6, 0.7, and 0.8 were prepared by mixture method. The ac conductivity and dielectric properties of the studied bulk compositions have been investigated in the frequency range 1 × 10^3 - 5 × 10^6 Hz and temperature range 303-473 K. The experimental results indicate that the ac conductivity σ_{ac}(ω), dielectric constant ε' and dielectric loss ε" depend on the temperature and frequency. The ac conductivity was found to obey the power law ω^{S} with the frequency exponent S > 1 decreasing with increasing temperature. The present results are compared to the principal theories that describe the universal dielectric response behavior. Values of dielectric constant ε' and dielectric loss ε" were found to be temperature and frequency dependent and the maximum barrier height W_{m} is calculated.
Keywords
EN
Year
Volume
122
Issue
1
Pages
174-179
Physical description
Dates
published
2012-07
received
2011-07-22
(unknown)
2012-04-14
References
  • 1. A. Ioachim, M.I. Toacsan, M.G. Banciu, L. Nedelcu, F. Vasiliu, H.V. Alexandru, C. Berbecaru, G. Stoica, Prog. Solid State Chem. 35, 513 (2007)
  • 2. Y. Ota, K.I. Kakimoto, H. Ohsato, T. Okawa, J. Eur. Ceram. Soc. 24, 1755 (2004)
  • 3. Y.C. Chen, P.S. Cheng, C.F. Yang, W.C. Tzou, Ceram. Int. 27, 809 (2001)
  • 4. H. Zhou, H. Wang, Y. Chen, K. Li, X. Yao, Mater. Chem. Phys. 113, 1 (2009)
  • 5. R. Zuo, X. Fang, C. Ye, Appl. Phys. Lett. 90, 092904 (2007)
  • 6. J. Qi, Z. Gui, W. Li, Y. Wang, Y. Wu, L. Li, Mater. Lett. 56, 507 (2002)
  • 7. L.P. Curecheriu, L. Mitoseriu, A. Ianculescu, J. Alloys Comp. 482, 1 (2009)
  • 8. A.K. Nath, K.C. Singh, R. Laishram, O.P. Thakur, Mater. Sci. Eng. B 172, 151 (2010)
  • 9. G. Aldica, M. Cernea, R. Radu, R. Trusca, J. Alloys Comp. 505, 273 (2010)
  • 10. V.V. Shvartsman, W. Kleemann, J. Dec, J. Appl. Phys. 99, 124111 (2006)
  • 11. P. Maass, M. Meyer, A. Bunde, Phys. Rev. B 51, 8164 (1995)
  • 12. A.R. Long, Adv. Phys. 31, 553 (1982)
  • 13. S.R. Elliott, Adv. Phys. 36, 135 (1987); Solid State Ion. 70-71, 27 (1994)
  • 14. D.L. Sidebottom, P.F. Green, R.K. Brow, J. Non-Cryst. Solids 203, 300 (1996)
  • 15. A.K. Jonscher, Nature 267, 673 (1977)
  • 16. A.K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectrics Press, London 1983
  • 17. H.M. El-Mallah, J. Mater. Sci. 39, 1711 (2004)
  • 18. W.K. Lee, J.F. Liu, A.S. Nowick, Phys. Rev. Lett. 67, 1559 (1994)
  • 19. R.H. Chen, R.J. Wang, T.M. Chen, C.S. Shern, J. Phys. Chem. Solids 61, 519 (2000)
  • 20. H.M. El-Mallah, N.A. Hegab, J. Mater. Sci. 42, 336 (2007)
  • 21. K.S. Gilroy, W.A. Phillips, Philos. Mag. B 43, 735 (1981)
  • 22. J.G. Bednorz, K.A. Muller, Phys. Rev. Lett. 52, 2289 (1984)
  • 23. N.A. Hegab, M.A. Afifi, H.E. Atyia, M.I. Ismael, Acta Phys. Pol. A 119, 416 (2011)
  • 24. M. Barsoum, Fundamentals of Ceramics, Mc Graw-Hill, New York 1977,p. 543
  • 25. W. Cao, R. Gerhardt, Solid State Ion. 42, 213 (1990)
  • 26. T.G. Abdel-Malak, M.E. Kassem, N.S. Aly, S.M. Kalil, Acta Phys. Pol. A 81, 675 (1992)
  • 27. R. Singh, R.P. Tandon, V.S. Panwar, S. Chandra, J. Appl. Phys. 69, 2504 (1991)
  • 28. T.M. Stevels, The Electrical Properties of Glasses. Handbuch in Phys., Springer, Berlin 1957, p. 350
  • 29. H.W. Gibsen, R.J. Weagley, W.M. Prest, Jr., R. Mosher, S. Kaplan, J. Phys. Collo. C 6 (suppl.), 123 (1983)
  • 30. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford 1979
  • 31. J.C. Giuntini, J.V. Zancheha, J. Non-Cryst. Solids 34, 57 (1979)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv122n1p35kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.