Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 122 | 1 | 63-70

Article title

Phase Shifter Operation of the Azimuthally Magnetized Coaxial Ferrite Waveguide

Content

Title variants

Languages of publication

EN

Abstracts

EN
The terms for operation of the coaxial waveguide, entirely filled with azimuthally magnetized latching ferrite, as a digital nonreciprocal phase shifter for the normal TE_{01} mode, are found. They are classified as physical, mathematical and functional ones. The physical prerequisites are drawn from the phase curves of the structure and specify the boundaries of the interval in which it produces differential phase shift for a given numerical equivalent of the modulus of off-diagonal ferrite permeability tensor element. The mathematical condition brings the parameters of configuration together with certain roots of its characteristic equation, derived in terms of complex Kummer and Tricomi confluent hypergeometric functions and with the related to them positive real L_2(c,ρ,n) numbers (c=3, 0<ρ<1, n=1). The functional criteria determine the borders of the domain of phase shifter operation of the geometry. These are functions, defined for a fixed central conductor thickness which express in normalized form the impact of the guide radius on the phase shift at the cut-off frequencies and at the envelopes, denoting the termination of the phase curves for negative ferrite magnetization from the side of higher frequencies. The same are reckoned, employing iterative methods, consisting in a repeated numerical solution of the equation mentioned, followed by a computation of the guide radius and phase constant of the wave and are plotted graphically. The influence of the parameters of transmission line on the area referred to is analyzed.

Keywords

Contributors

  • 2, Tcherny Vrikh Str., BG-5138 Polikraishte, Bulgaria
author
  • Faculty of Mathematics and Informatics, University of Veliko Tirnovo "St. St. Cyril and Methodius" BG-5000 Veliko Tirnovo, Bulgaria

References

  • 1. D.M. Bolle, G.S. Heller, IEEE Trans. Microwave Theory Tech. MTT-13, 421 (1965). See also D.M. Bolle, N. Mohsenian, Correction, IEEE Trans. Microwave Theory Tech. MTT-34, 427 (1986)
  • 2. P.J.B. Clarricoats, A.D. Olver, Electron. Lett. 2, 37 (1966)
  • 3. R.E. Eaves, D.M. Bolle, Electron. Lett. 2, 275 (1966)
  • 4. W.J. Ince, G.N. Tsandoulas, IEEE Trans. Microwave Theory Tech. MTT-19, 393 (1971)
  • 5. F.J. Bernues, D.M. Bolle, A Study of Modes in Circular Waveguide with azimuthally Magnetized Ferrite, Div. of Engineering, Brown Univ., Providence, R.I., NSF Res. Grant NSF-GK 2351/1, Washington, D.C. 1971
  • 6. F.J. Bernues, D.M. Bolle, Trans. Microwave Theory Tech. MTT-21, 842 (1973)
  • 7. O. Parriaux, Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, Switzerland 1975
  • 8. O. Parriaux, F.E. Gardiol, Wave Electronics 1, 363 (1976)
  • 9. O. Parriaux, F.E. Gardiol, IEEE Trans. Microwave Theory Tech. MTT-25, 221 (1977)
  • 10. R.S. Mueller, F.J. Rosenbaum, J. Appl. Phys. 48, 2601 (1977)
  • 11. S.N. Samaddar, J. Appl. Phys. 50, 518 (1979)
  • 12. M.E. Averbuch, in: Proc. V. Int. Conf. on Microwave Ferrites, Vilnius (USSR), 1980, Vol. 4, p. 126 (in Russian)
  • 13. G.A. Red'kin, A.E. Mudrov, V.A. Meshcheriakov, in Ref. [12], p. 170
  • 14. Y. Xu, J. Chen, IEEE Trans. Magn. MAG-16, 1174 (1980)
  • 15. I.V. Lindell, IEEE Trans. Microwave Theory Tech. MTT-30, 1194 (1982)
  • 16. A.J. Baden-Fuller, Ferrites at Microwave Frequencies, IEEE Electromagnetic Waves Series 23, Peter Peregrinus, London, UK 1987
  • 17. G.N. Georgiev, M.N. Georgieva-Grosse, IEEE Antennas Wireless Propagat. Lett. AWPL-2, 306 (2003)
  • 18. G.N. Georgiev, M.N. Georgieva-Grosse, J. Telecomm. Information Technol. JTIT-6, 112 (2005)
  • 19. G.N. Georgiev, M.N. Georgieva-Grosse, in: Proc. XXIX URSI General Assembly, Chicago (IL), 2008, acticle ID BK.6 (120)
  • 20. G.N. Georgiev, M.N. Georgieva-Grosse, in: Proc. Joint 5th ESA Worksh. Millim. Wave Technol. Appl. & 31st ESA Antenna Workshop, ESA/ESTEC, Noordwijk (The Netherlands), 2009, pt. 2, p. 791
  • 21. M.N. Georgieva-Grosse, G.N. Georgiev, in: Proc. 26th Progr. in Electromagn. Res. Symp. PIERS 2009, Moscow (Russia), 2009, in Abstracts, p. 612, in PIERS Proc., Electromagnetics Academy, Cambridge (MA), p. 1043
  • 22. G.N. Georgiev, M.N. Georgieva-Grosse, in: Proc. IX Kharkov Young Sci. Conf. 'Radiophysics, Photonics, Electronics and Biophysics,' Kharkov (Ukraine), 2009, p. 6
  • 23. G.N. Georgiev, M.N. Georgieva-Grosse, in: Proc. Asia-Pacific Microwave Conf. APMC-2009, Singapore, 2009, p. 870
  • 24. G.N. Georgiev, M.N. Georgieva-Grosse, in: Proc. 27th Progr. Electromagn. Res. Symp. PIERS 2010, Xi'an (China), 2010, in Abstracts, p. 186, in PIERS Proc., Electromagnetics Academy, Cambridge (MA), p. 274; PIERS Online 6, 365 (2010)
  • 25. M.N. Georgieva-Grosse, G.N. Georgiev, in: Proc. 4rd Europ. Conf. Antennas Propagat. EuCAP 2010, Barcelona (Spain), 2010, article ID P4-53, 5 pages
  • 26. M.N. Georgieva-Grosse, G.N. Georgiev, in: Proc. 28th Progr. in Electromagn. Res. Symp. PIERS 2010, Cambridge (MA), in Abstracts, p. 505, in PIERS Proc., Electromagnetics Academy, Cambridge (MA) 2010, p. 841
  • 27. G.N. Georgiev, M.N. Georgieva-Grosse, in: Proc. 2010 IEEE Int. Symp. Antennas Propagat. & CNC-USNC/URSI Radio Science Meeting AP-S 2010, Toronto (ON), 2010, article ID 330.9
  • 28. M.N. Georgieva-Grosse, G.N. Georgiev, in: Proc. 18th Int. Conf. Microwaves, Radar, Wireless Commun. MIKON-2010, Vilnius (Lithuania), Ed. B. Levitas, Geozondas, Vilnius 2010, article ID C7-3, (Focused Section)
  • 29. M.N. Georgieva-Grosse, G.N. Georgiev, in: Proc. 5th Europ. Conf. Antennas Propagat. EuCAP 2011, Rome (Italy), 2011, p. 1666
  • 30. G.N. Georgiev, M.N. Georgieva-Grosse, in: Proc. Thirteenth Int. Conf. Electromagn. Adv. Applicat. ICEAA'11, Turin (Italy), 2011, p. 544, (Invited Paper in the Special Session 'Future challenges in mathematical and computational electromagnetics and its applications', organized by G.N. Georgiev, M.N. Georgieva-Grosse)
  • 31. M.N. Georgieva-Grosse, G.N. Georgiev, in: Proc. 1st IEEE-APS Topical Conf. Antennas Propagat. Wireless Commun. IEEE APWC'11, Turin (Italy), 2011, p. 865, (Invited Paper in the Special Session 'Advances in wireless communications and their applications,' organized by M.N. Georgieva-Grosse, G.N. Georgiev)
  • 32. M.N. Georgieva-Grosse, G.N. Georgiev, in: Proc. 6th Europ. Conf. Antennas Propagat. EuCAP 2012, Prague 2012, p. 952
  • 33. G.N. Georgiev, M.N. Georgieva-Grosse, Telecomm. Radioeng. 71, 209 (2012)
  • 34. G.N. Georgiev, M.N. Georgieva-Grosse, in: Wave Propagation, Academy Publish, Cheyenne (WY) 2012
  • 35. M.N. Georgieva-Grosse, G.N. Georgiev, in: Proc. Fourteenth Int. Conf. Electromagn. Adv. Applicat. ICEAA'12, Cape Town (South Africa), 2012, article ID 496, (Invited Paper in the Special Session 'Advanced applications of the mathematical and computational electromagnetics,' organized by G.N. Georgiev and M.N. Georgieva-Grosse)
  • 36. M.I. Andriychuk, N.N. Voitovich, P.A. Savenko, V.P. Tkachuk, in: Numerical Methods and Algorithms, Naukova Dumka Pub., Kiev 1993, p. 256 (in Russian)
  • 37. R.C. Hansen, Phased Array Antennas, Wiley, New York 1998
  • 38. R.J. Mailloux, Phased Array Antenna Handbook, Artech House, Norwood, MA, 1st ed 1994, 2nd ed 2005
  • 39. S.P. Skobelev, Phased Array Antennas with Optimized Element Patterns, Artech House, Norwood, MA 2011
  • 40. V.A. Kashin, A.P. Safonov, J. Commun. Technol. Electron. 50, 853 (2005) (in Russian)
  • 41. F.G. Tricomi, Confluent Hypergeometric Functions, Gauthier-Villars, Paris, France 1960 (in French)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv122n1p13kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.