PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 122 | 1 | 20-24
Article title

Exact Solutions and Localized Structures for a (3+1)-Dimensional Burgers Equation

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
A (3+1)-dimensional Burgers equation is studied by the singular manifold method. By choosing different seed solutions, auto-Bäcklund transformation, the Cole-Hopf transformation and a functional separation exact solution containing two low dimensional arbitrary functions are obtained for the equation in question. Some interesting localized coherent structures are given and their interaction properties are numerically studied. Some new nonlinear phenomena are reported.
Keywords
EN
Contributors
author
  • School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, P.R. China
References
  • 1. W. Miller, Jr., in: Symmetries and Nonlinear Phenomena, Eds. D. Levi, P. Winternitz, World Sci., London 1989
  • 2. E.G. Kalnins, W. Miller, J. Math. Phys. 26, 1560 (1985)
  • 3. O.V. Kaptsov, Nonlinear Anal. 19, 753 (1992)
  • 4. W. Miller, Jr., L.A. Rubel, J. Phys. A 26, 1901 (1993)
  • 5. R.Z. Zhdanov, J. Phys. A 27, L291 (1994)
  • 6. E. Pucci, G. Saccomandi, Physica D 139, 28 (2000)
  • 7. C.Z. Qu, S.L. Zhang, R.C. Liu, Physica D 144, 97 (2000)
  • 8. J.P. Ying, S.Y. Lou, Chin. Phys. Lett. 20, 1448 (2003)
  • 9. C.Q. Dai, C.J. Yan, J.F. Zhang, Commun. Theor. Phys. 46, 389 (2006)
  • 10. S.F. Shen, Z.L. Pan, J.F. Zhang, Commun. Theor. Phys. 42, 49 (2004)
  • 11. J. Wess, J. Math. Phys. 26, 258 (1985)
  • 12. Y.Z. Peng, Prog. Theor. Phys. 113, 927 (2005)
  • 13. Y.Z. Peng, E.V. Krishnan, Rep. Math. Phys. 56, 367 (2005)
  • 14. Y.Z. Peng, E. Yomba, Appl. Math. Comput. 183, 61 (2006)
  • 15. Y.Z. Peng, Z. Naturforsch. A 61, 253 (2006)
  • 16. Y.Z. Peng, Rep. Math. Phys. 60, 259 (2007)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv122n1p06kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.